:: دوره 7، شماره 1 - ( 1399 ) ::
جلد 7 شماره 1 صفحات 46-33 برگشت به فهرست نسخه ها
بررسی و مقایسه کارایی نشانگرهای مولکولی مختلف در برآورد فاصله ژنتیکی جمعیت‌های مختلف بلوط ایرانی استان لرستان (Quercus brantii Lindi)
رضا میر دریکوند* ، کامران سمیعی
دانشگاه آزاد اسلامی واحد خرم آباد ، mirderikvand@khoiau.ac.ir
چکیده:   (7599 مشاهده)
برآورد تنوع ژنتیکی و ارزیابی منابع ژرم‌پلاسم گیاهی، مهم‌ترین مرحله در جمع‌آوری، مدیریت و استفاده صحیح از ذخایر ژنتیکی محسوب می‌گردد. در همین راستا مقایسه نشانگرهای مختلف در ارزیابی تنوع و ارائه نشانگرهایی با بیشترین کارایی، از اهمیت بسیار بالایی برخوردار است. به‌منظور بررسی تنوع ژنتیکی بین جمعیت طبیعی بلوط ایرانی جنگل‌های استان لرستان، 20 جمعیت مختلف از مناطق جغرافیایی و اقلیمی مختلف جمع‌آوری شد. پس از استخراج DNA نمونه‌های مورد مطالعه، از سه سیستم نشانگری ISJ، ISSR و SCoT جهت بررسی چندشکلی استفاده شد. گروه‌بندی ژنوتیپ‌ها براساس اطلاعات حاصل از باندهای چند شکل به‌دست آمده از هر 3 نشانگر به‌طور جداگانه و همچنین به صورت ترکیب داده‌های سه نشانگر انجام گرفت. نتایج الکتروفورز محصول واکنش زنجیره‌ای پلیمراز (PCR) آغازگرهای مورد استفاده، 91 باند چندشکل با میانگین 71 درصد را بین ژنوتیپ‌ها نشان داد. نشانگر ISSR با 44 باند بیشترین تعداد باند چند شکل را به خود اختصاص داد. نشانگرهای ISJ، ISSR و SCoT ژنوتیپ‌ها را به‌ترتیب به 5، 6 و 5 گروه تفکیک نمودند و درمجموع ترکیب داده‌های سه نشانگر، ژنوتیپ‌ها به 5 گروه چند ژنوتیپی و 3 گروه تک ژنوتیپی تفکیک شدند. نتایج نشان داد که گروه‌بندی به‌دست آمده از نشانگرهای مختلف تا حدودی با گروه‌بندی ژنوتیپ‌ها بر اساس شرایط اقلیمی موجود همخوانی داشت. بیشترین شباهت در گروه‌بندی‌های انجام گرفته، به نشانگر ISJ و ISSR با 89 درصد تعلق داشت. به‌طور کلی نتایج بیانگر کارایی مناسب نشانگرهای مورد استفاده در برآورد فواصل ژنتیکی بین جمعیت مختلف بلوط بود.
واژه‌های کلیدی: بلوط ایرانی، تنوع ژنتیکی، زاگرس، نشانگر مولکولی
متن کامل [PDF 749 kb]   (1561 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: ژنتیک مولکولی
پذیرش: 1399/10/13
فهرست منابع
1. Alikhani, L., Shafie Rahmani, M. Shabanian, N., Badakhshan, H. and Khub, A.K. (2014). Genetic variability and structure of Quercus brantii assessed by iSSR, IRAP and SCoT marker. Gene, 552: 176-183.
2. Ardi, M., Rahmani, F. and Siami, A. (2012). Genetic variation among Iranian oaks (Quercus spp.) using random amplified polymorphic DNA (RAPD) markers. African Journal of Biotechnology, 11(45): 10291-10296.
3. Aziznia, B., Badakhshan, H., Javadi, T. and Zamani, S. (2020). Assessment of diversity in barley genotypes (Hordeum vulgare L) based on beta-glucan content and ISSR markers. Plant Genetic Researches, 6(2): 97-110 (In Persian).
4. Batos, B., Jovanovic, D.S. and Milkovic, D. (2014). Spatial and temporal variability of flowering in the Oak (Quercus robur L.). Izvorni Znanstveni Clinic, 7: 371-379.
5. Bruschi, P., Vendramini, G.G., Bussotti, F. and Grossoni, P. (2000). Morphological and molecular diferentiation between Quercus petraea (Matt.) Liebl.and Quercus pubescens willd. (Fagaceae) in northern and central Italy. Annals of Botany, 85: 325-333.
6. Carabeo, M., Simeone, M.C., Cherubini, M., Mattia, C., Chiocchini, F., Bertini, L., Caruso, C., Mantia, T.L., Villani, F. and Mattioni, C. (2017). Estimating the genetic diversity and structure of Quercus trojana Webb populations in Italy by SSRs: implications for management and conservation. Canadian Journal of Forest Researches, 47: 331-339.
7. Conte, L., Cott, C. and Cristofolini, G. (2007) Molecular evidence for hybrid origin of Quercus crenata Lam. (Fagaceae) from Q. cerris L. and Q. suber L. Plant Biosystems, 141: 181-193. [DOI:10.1080/11263500701401463]
8. Doyle, J.J. and Doyle J.L. (1990). Isolation of plant DNA from fresh tissue. Focus, 12: 13-15.
9. Erfanifard, Y., Feghhi, J., Zobeiri, M. and Namiranian, M. (2009). Spatial pattern analysis in Persian oak (Quercus brantii var. persica) forests on B & W aerial photographs. Environmental Monitoring Assessment, 150: 251-259.
10. Geburek, T. and Konrad, H. (2008). Why the conservation of forest genetic resources has not worked? Conserved Biology, 22(2): 267-274.
11. Gheitarani, B., Erfani-Moghadam, J. and Fazeli, A. (2020). Evaluation of genetic diversity among some common Fig using RAPD and ISSR molecular markers. Plant Genetic Researches, 6(2): 43-54 (In Persian).
12. Grattapaglia, D., Plomion, C. Kirst, M. and Sederoff, R.R. (2009) Genomics of growth traits in forest trees. Current Opinion Plant Biology, 12:148-156. [DOI:10.1016/j.pbi.2008.12.008]
13. Jose-Maldia, L.S. Matsumoto, A., Ueno, S., Kanazashi, A., Kanno, M., Namikawa, K., Yoshimaru, H. and Tsumura, Y. (2017). Geographic patterns of genetic variation in nuclear and chloroplast genomes of two related oaks (Quercus aliena and Q. serrata) in Japan: implications for seed and seedling transfer. Tree Genetics and Genomes, 13:121.
14. Marakli, S. (2018). A brief review of molecular markers to analysis medicinally important plants. Journal of Life Sciences and Biotechnology, 1(1): 29-36.
15. Müller, M. and Gailing, O. (2018). Characterization of 20 new EST-SSR markers for northern red oak (Quercus rubra L.) and their transferability to Fagus sylvatica L. and six oak species of section Lobatae and Quercus. Annals of Forestry Research, 61(2): 211-222.
16. Neophytou, C., Aravanopoulos, F.A., Fink, S. and Dounavi, A. (2010). Detecting interspecific and geographic differentiation patterns in two inter fertile oak species (Quercus petraea (Matt.) Liebl. and Q. robur L.) using small sets of microsatellite markers. Forestry Ecology Management, 259: 20262035.
17. Olfat, A.M. and Pourtahmasi, K. (2010). Anatomical Characters in tree oak species (Q. libani, Q. brantii and Q. insectaria) from Iranian Zagros mountains. Australian Journal of Basic Applied Science, 4(8): 3230-3237.
18. Porth, I. and El-Kassaby, Y.A. (2014). Assessment of the genetic diversity in forest tree populations using molecular markers. Diversity, 6: 283-295.
19. Ranjan, R.G. and Aparajita, S. (2010). Phylogenic study of twelve species of Phyllanthus originated from India through molecular for conservation. American Journal of Plant Science, 1: 32-37.
20. Rohlf, F.J. (1998). NTSYSpc Version 2.02. Numerical Taxonomy and Multivariate Analysis System. Applied Biostatistics Inc., Exeter Software, Setauket, New York, USA.
21. Saenz-Romero, C. and Tapia-Olivares, B.L. (2003). Pinus oocarpa isoenzymatic variation along an altitudinal gradient in Michoacan, Mexico. Silvae Genet, 52: 237-240.
22. Saha, R. (2018). Genetic diversity in Quercus leucotrichophora populations through RAPD markers. Environment and Biotechnology, 11(1): 97-101.
23. Shabanian, N., Havasi, A. and Mehrabi, A.A. (2016). Genetic differentiation in Persian oak (Quercus brantii) populations using genomic inter-microsatellite markers. Iranian Journal of Rangelands and Forests Plant Breeding and Genetic Research, 24(1): 66-78.
24. Shabanian, T., Alikhani, L. and Rahmani, M.S. (2015a). Genetic and phenotypic diversity of Iranian oak populations in declining forests of northern Zagros using biochemical characteristics and molecular marker SCoT. Journal of Genetic Research and Breeding of Range and Forest Plants, 23(1): 13-39 (In Persian).
25. Shabanian, T., Alikhani, L., Rahmani, M. and Badakhshan, S. (2015b). Evaluation of genetic and phenotypic diversity of Quercus libani populations in declining forests of northern Zagros using SCoT molecular marker and morphological and biochemical characteristics. Journal of Wood and Forest Science and Technology Research, 22(4): 55-77 (In Persian).
26. Shamari, A., Mehrabi, A.A., Maleki, A. and Rostami, A. (2008). Study of genetic diversity structure of Iranian oak (Quercus brantii Lindi.) Populations in the middle Zagros using genomic microsatellite markers. Iranian Journal of Forestry, 9(4): 511-525 (In Persian).
27. Shi, X., Wen, Q., Cao, M., Guo, X. and Xu, L. (2017). Genetic diversity and structure of natural Quercus variabilis population in China as revealed by microsatellites markers. Forests, 8: 495.



XML   English Abstract   Print



بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.
دوره 7، شماره 1 - ( 1399 ) برگشت به فهرست نسخه ها