[Home ] [Archive]   [ فارسی ]  
:: About :: Main :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..



 
..
:: Volume 9, Issue 1 (2022) ::
pgr 2022, 9(1): 71-84 Back to browse issues page
Prioritization and Identification of Candidate Genes Associated with Root Traits Under Salinity Stress in Bread Wheat (Triticum aestivum L.)
Elina Nazari Khakshoor , Amin Azadi * , Peyman Fourozesh , Alireza Etminan , Eslam Majidi Hervan
Department of Plant Breeding, Yadegar-e-Imam Khomeini (RAH) Shahre Rey Branch, Islamic Azad University, Shahre Rey, Iran , amin.azadi@iausr.ac.ir
Abstract:   (3863 Views)
Salinity stress falls into the major environmental factors that limit the production of various crops, including wheat. An effective approach to reducing the impacts of stress is the production of new salinity-tolerant cultivars. Accordingly, identifying effective genes and molecular mechanisms responsible for salinity tolerance is an essential step for breeding programs. In this investigation, a population of F12 recombinant inbred lines (RIL) comprising 186 genotypes was studied to identify the loci that control some physiological traits and element concentrations in the wheat seedling stage under salinity stress. Totally, 12 quantitative traits loci (QTLs) were identified for wet weight, dry weight, length, and sodium and potassium contents using the composite interval mapping (CIM) analysis. Most of the identified QTLs were located on chromosomes B and D. A gene ontology (GO) analysis specified candidate genes in QTL regions. However, it is noteworthy that candidate genes need confirmation using marker-assisted identification. The prioritization of genes resulted in determining 3486 candidate genes in 19 GO phrases (including eight biological processes). These genes are involved in the processes of glutathione metabolism, L-phenylalanine catabolism, cytoplasmic translation, auxin-activated signaling pathway, transcriptional regulation, DNA-patterning, protoporphyrinogen IX, cell wall organization and genesis, xyloglucan tRNA metabolism, protein glycosylation, pigment biosynthesis, etc. GO may be introduced for identifying novel CGs in which the associated QTL is responsible for complicated traits.
 
Keywords: Salinity stress, Bread wheat, Candidate genes, QTL mapping
Full-Text [PDF 695 kb]   (1101 Downloads)    
Type of Study: Research | Subject: Plant improvement
Accepted: 2022/08/21
References
1. Ahmad, M., Shahzad, A., Iqbal, M., Asif, M. and Hirani, A.H. (2013). Morphological and molecular genetic variation in wheat for salinity tolerance at germination and early seedling stage. Australian Journal of Crop Science, 7(1): 66-74.
2. Akbari-Ghogdi, E., Izadi-Darbandi, A., Borzouei, A. and Majdabadi, A. (2011). Evaluation of morphological changes in some wheat genotypes under salt stress. Journal of Science and Technology of Greenhouse Culture, 1(4): 71-83 (In Persian).
3. Ashraf, M. and Harris, P. (2005). Abiotic Stresses: Plant Resistance Through Breeding and Molecular Approaches. CRC Press, Boca Raton, Florida, USA.
4. Asif, M., Garcia, M., Joanne Tilbrook, J., Brien, C., Dowling, K., Gilliham, M., Fleury, L., Roy, J. and Pearson, A. (2021). Identification of salt tolerance QTL in a wheat RIL mapping population using destructive and non-destructive phenotyping. Functional Plant Biology, 48: 131-140. [DOI:10.1071/FP20167]
5. Asif, M., Schilling, R.K., Tilbrook, J., Brien, C., Dowling, K., Rabie, H., Short, L., Trittermann, C., Garcia, A., Barrett-Lennard, E.G., Berger, B., Mather, D.E., Gilliham, M., Fleury, D., Tester, M., Roy, S.J. and Pearson, A.S. (2018). Mappingof novel salt tolerance QTL in an Excalibur Kukri doubled haploidwheat population. Theoretical and Applied Genetics, 131: 2179-2196. [DOI:10.1007/s00122-018-3146-y]
6. Azadi, A., Mardi, M., Hervan, E.M., Mohammadi, S.A., Moradi, F., Tabatabaee, M.T., Pirseyedi, S.M., Ebrahimi, M., Fayaz, F. and Kazemi M. (2015). QTL mapping of yield and yield components under normal and salt-stress conditions in bread wheat (Triticum aestivum L.). Plant Molecular Biology Reporter, 33(1): 102-120. [DOI:10.1007/s11105-014-0726-0]
7. Azadi, A., Mardi, M., Majidi Harvan, E, Mohammadi, S.A. and Moradi, F. (2017). QTL Analysis for Sodium and Potassium Concentration and Potassium to Sodium Ratio in Wheat Under Salt-Stress Condition. Crop Biotechnology, 6(16):61-73 (In Persian).
8. Barajehfard, M., Siahpoosh, M R. and Modarresi, M. (2017). QTLs associated with stemlet and rootlet growth in the early stages of germination of wheat. Plant Genetic Researches, 3(2): 59-68 (In Persian). [DOI:10.29252/pgr.3.2.59]
9. Benderradji, L., Brini, F., Amar, S.B., Kellou, K., Azaza, J., Masmoudi, K., Bouzerzour, H. and Hanin, M. (2011). Sodium transport in the seedlings of two bread wheat (Triticum aestivum L.) genotypes showing contrasting salt stress tolerance. Australian Journal of Crop Science, 5(3): 233-241.
10. Chen,Y., Palta, J., Prasad, P.V. and Siddique, K.H. (2020). Phenotypic variability in bread wheat root systems at the early vegetative stage. BMC Plant Biology, 20(1): 1-16. [DOI:10.1186/s12870-020-02390-8]
11. Churchill, G.A. and Doerge, R.W. (1994). Empirical threshold values for quantitative trait mapping. Genetics, 138(3): 963-971. [DOI:10.1093/genetics/138.3.963]
12. Gardiner, L.J., Bansept-Basler, P., El-Soda, M., Hall A. and O'Sullivan D.M. (2020). A framework for gene mapping in wheat demonstrated using the Yr7 yellow rust resistance gene. Plos One, 15(4): e0231157. [DOI:10.1371/journal.pone.0231157]
13. Genc, Y., Taylor, J., Rongala, J. and Oldach, K. (2014). A major locus for chloride accumulation on chromosome 5A in bread wheat. PLoS One, 9: e98845. [DOI:10.1371/journal.pone.0098845]
14. Hamada, A. and El-Enany, A. (1994). Effect of NaCl salinity on growth, pigment and mineral element contents, and gas exchange of broad bean and pea plants. Biologia Plantarum, 36(1): 75-81. [DOI:10.1007/BF02921273]
15. Hassan, G. and Gul, R. (2006). Evaluation of the heterotic and heterobeltiotic potential of wheat genotypes for improved yield. Pakistan Journal of Botany, 38(4): 1159-1167.
16. Hoagland, D.R. and Arnon, D.I. )1950(. The Water Culture Method for Growing Plants Without Soil. California Agricultural Experiment Station. Station, California, USA.
17. Ilyas, N., Amjid, M.W., Saleem, M.A., Khan, W., Wattoo, F.M., Rana, R.M., Maqsood, R.H., Zahid, A., Shah, G.A. and Anwar, A. (2020). Quantitative trait loci (QTL) mapping for physiological and biochemical attributes in a Pasban90/Frontana recombinant inbred lines (RILs) population of wheat (Triticum aestivum) under salt stress condition. Saudi Journal of Biological Sciences, 27(1): 341-351. [DOI:10.1016/j.sjbs.2019.10.003]
18. Jamil, A., Riaz, S., Ashraf, M. and Foolad, M. (2011). Gene expression profiling of plants under salt stress. Critical Reviews in Plant Sciences, 30(5): 435-458. [DOI:10.1080/07352689.2011.605739]
19. Kiani, J.K., Bihamta, M., Habibi, D., Aaghsrzadeh, A. and Saremirad, A. (2020). Effect of mycorrhizal fungus application on some biochemical characters of wheat cultivars in lead contaminated soil. Journal of Water and Soil, 34(2): 393-408 (In Persian).
20. Lander, E.S. and Botstein, D. (1989). Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics, 121(1): 185-199. [DOI:10.1093/genetics/121.1.185]
21. Leonard, K.J. and Szabo L.J. (2005). Stem rust of small grains and grasses caused by Puccinia graminis. Molecular Plant Pathology, 6(2): 99-111. [DOI:10.1111/j.1364-3703.2005.00273.x]
22. Lindsay, M.P., Lagudah, E.S., Hare, R.A. and Munns, R. (2004). A locus for sodium exclusion (Nax1), a trait for salt tolerance, mapped in durum wheat. Functional Plant Biology, 31 (11): 1105-1114. [DOI:10.1071/FP04111]
23. Ma, L., Zhou, E., Huo, N., Zhou, R., Wang, G. and Jia, J. (2007). Genetic analysis of salt tolerance in a recombinant inbred population of wheat (Triticum aestivum L). Euphytica, 153(1): 109-117. [DOI:10.1007/s10681-006-9247-8]
24. Mir Drikvand, R., Najafian, G., Bihamta, M. and Ebrahimi, A. (2015). detection of qtls associated to some grain traits in bread wheat (triticum aestivum l.), using association mapping. Plant Genetic Researches, 1(2): 43-54 (In Persian). [DOI:10.29252/pgr.1.2.43]
25. Oerke, E.C., Dehne, H.W., Schönbeck, F. and Weber, A. (2012). Crop Production And Crop Protection. Estimated Losses in Major Food and Cash Crops. Elsevier Science, Amsterdam, NL.
26. Ogbonnaya, F., Huang, S. and Steadman, E. (2008). Tolerance in synthetic derived backcrossed bread lines. 11th International Wheat. Genetics Symposium, Sydney, Australia.
27. Oyiga, B.C., Sharma, R., Shen, J., Baum, M., Ogbonnaya, F., Léon, J. and Ballvora, A. (2016). Identification and characterization of salt tolerance of wheat germplasm using a multivariable screening approach. Journal of Agronomy and Crop Science, 202(6): 472-485. [DOI:10.1111/jac.12178]
28. Oyiga, B.C., Sharma, R.C., Baum, M., Ogbonnaya, F.C., Léon, J. and Ballvora, A. (2018). Allelic variations and differential expressions detected at quantitative trait loci for salt stress tolerance in wheat. Plant, Cell & Environment, 41(5): 919-935. [DOI:10.1111/pce.12898]
29. Ravi, K., Vadez, V., Isobe, S., Mir, R., Guo, Y., Nigam, S., Gowda, M., Radhakrishnan, T., Bertioli, D. and Knapp, S. (2011). Identification of several small main-effect QTLs and a large number of epistatic QTLs for drought tolerance related traits in groundnut (Arachis hypogaea L.). Theoretical and Applied Genetics, 122(6): 1119-1132. [DOI:10.1007/s00122-010-1517-0]
30. Ren, Y., Xu, Y., Teng, W., Li, B. and Lin, T. (2018). QTLs for seedling traits under salinity stress in hexaploid wheat. Ciencia Rural, 48(3): e20170446. [DOI:10.1590/0103-8478cr20170446]
31. Rong, W., Qi, L., Wang, A., Ye, X., Du, L., Liang, H., Xin, Z. and Zhang, Z. (2014). The ERF transcription factor Ta ERF 3 promotes tolerance to salt and drought stresses in wheat. Plant Biotechnology Journal, 12(4): 468-479. [DOI:10.1111/pbi.12153]
32. Rufo, R., Salvi, S., Royo, C. and Soriano, J.M. (2020). Exploring the genetic architecture of root-related traits in mediterranean bread wheat landraces by genome-wide association analysis. Agronomy, 10(5): 613-620. [DOI:10.3390/agronomy10050613]
33. Saremirad, A., Bihamta, M., Malihipour, A., Mostafai, K. and Alipour, H. (2021). Association mapping of bread wheat genotypes resistance to stem rust. M.Sc. Thesis, Islamic Azad University of Karaj Branch, Alborz, Karaj, Iran (In Persian).
34. Saremirad, A. and Mostafavi, K. (2020). Genetic diversity study of sunflower (Helianthus annus L.) genotypes for agro-morphological traits under normal and drought stress conditions. Plant Productions, 43(2): 227-240 (In Persian).
35. Soriano, J.M. and Alvaro, F. (2019). Discovering consensus genomic regions in wheat for root-related traits by QTL meta-analysis. Scientific Reports, 9(1): 1-14. [DOI:10.1038/s41598-019-47038-2]
36. Tanksley, S.D. (1993). Mapping polygenes. Annual Review of Genetics, 27(1): 205-233. [DOI:10.1146/annurev.ge.27.120193.001225]
37. Taranto, F., Mangini, G., Pasqualone, A., Gadaleta, A. and Blanco, A. (2015). Mapping and allelic variations of Ppo-B1 and Ppo-B2 gene-related polyphenol oxidase activity in durum wheat. Molecular Breeding, 35(2): 1-10. [DOI:10.1007/s11032-015-0272-y]
38. Tian, T., Liu, Y., Yan, H., You, Q., Yi, X., Du, Z., Xu, W. and Su, Z. (2017). AgriGO v2.0: a GO analysis toolkit for the agricultural community, 2017 update. Nucleic Acids Research, 45: W122-W129. [DOI:10.1093/nar/gkx382]
39. Ungerer, M.C., Halldorsdottir, S.S., Modliszewski, J.L., Mackay, T.F. and Purugganan, M.D. (2002). Quantitative trait loci for inflorescence development in Arabidopsis thaliana. Genetics,160(3): 1133-1151. [DOI:10.1093/genetics/160.3.1133]
40. Voorrips, R. (2002). MapChart: software for the graphical presentation of linkage maps and QTLs. Journal of Heredity, 93(1): 77-78. [DOI:10.1093/jhered/93.1.77]
41. Voss‐Fels, K.P., Qian, L., Parra‐Londono, S., Uptmoor, R., Frisch, M., Keeble‐Gagnère, G., Appels, R. and Snowdon, R.J. (2017). Linkage drag constrains the roots of modern wheat. Plant, Cell & Environment, 40(5): 717-725. [DOI:10.1111/pce.12888]
42. Wang, S., Wong, D., Forrest, K., Allen, A., Chao, S., Huang, B.E., Maccaferri, M., Salvi, S., Milner, S.G. and Cattivelli, L. (2014). Characterization of polyploid wheat genomic diversity using a high‐density 90 000 single nucleotide polymorphism array. Plant Biotechnology Journal, 12(6): 787-796. [DOI:10.1111/pbi.12183]
43. Wang, Y., Thorup-Kristensen, K., Jensen, L.S. and Magid, J. (2016). Vigorous root growth is a better indicator of early nutrient uptake than root hair traits in spring wheat grown under low fertility. Frontiers in Plant Science, 7: 865. [DOI:10.3389/fpls.2016.00865]
44. Zhu, J.K. (2016). Abiotic stress signaling and responses in plants. Cell, 167(2): 313-324. [DOI:10.1016/j.cell.2016.08.029]
Send email to the article author



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Nazari Khakshoor E, Azadi A, Fourozesh P, Etminan A, Majidi Hervan E. Prioritization and Identification of Candidate Genes Associated with Root Traits Under Salinity Stress in Bread Wheat (Triticum aestivum L.). pgr 2022; 9 (1) :71-84
URL: http://pgr.lu.ac.ir/article-1-239-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 9, Issue 1 (2022) Back to browse issues page
پژوهش های ژنتیک گیاهی Plant Genetic Researches
Persian site map - English site map - Created in 0.05 seconds with 36 queries by YEKTAWEB 4657