[Home ] [Archive]   [ فارسی ]  
:: About :: Main :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..



 
..
:: Volume 6, Issue 2 (2020) ::
pgr 2020, 6(2): 173-182 Back to browse issues page
qGW, a Stable and Major QTL for Increasing of Grain Weight in Rice (Oryza sativa L.)
Mohammad Reza Jafarzadeh Razmi , Saeid Navabpour , Hossein Sabouri * , Seyedeh Sanaz Ramezanpour
Department of Plant Production, Faculty of Agriculture and Natural Resources, Gonbad Kavous University, Gonbad Kavous, Iran , hossein.sabouri@gonbad.ac.ir
Abstract:   (11520 Views)
In order to analyze the genetic components of agronomic traits among 116 F9 recombinant lines derived from crosses of Ahlamitarom × Sepidroud rice cultivars, an experiment was conducted as a randomized complete block design in research farm of Gonbad Kavous University of Agriculture with three replications in 2016 and 2017. Genetic linkage map provided with 80 SSR markers, 28 iPBS Markers (79 polymorphic alleles), 7 IRAP markers (17 polymorphic alleles) and 26 ISSR markers (70 polymorphic alleles), which covered 1275.4 cM of the rice genome. QTL analysis was performed by Composite Interval Mapping. In two years, 15 QTLs detected for the studied traits. The additive effected varied from 6.725 g for grain weight up to -85.626 g for grain weight. Also, R2 for the detected QTLs explained from 11.3% to 20% of the total variation. The highest R2 was related to grain weight in the first year of experiment. Among the detected QTLs, qGWs on chromosome 1, were found to be stable and large effector QTLs for rice (Oryza sativa L.) grain weight, and can be used in marker-assisted breeding and selection programs after validation.
Keywords: Rice, Molecular markers, Linkage map, Grain weight, Shoot weight, QTL
Full-Text [PDF 1328 kb]   (1593 Downloads)    
Type of Study: Applicable | Subject: Molecular genetics
References
1. Ahmadi, J., Fotukian, M.H. and Fabriki Urang, S. (2009). Study of the association between microsatellite markers (SSRs) and yield components QTLs in rice (Oryza sativa L.). Modern Genetics, 3(4): 45-55 (In Persian).
2. Ahmadizadeh, M., Babaeian-Jelodar, N., Mohammadi-Nejad, G.H., Bagheri, N. and Singh, R.K. (2017). Identification of QTLs for rice yield and yield-related traits using high density SNPs linkage map. Journal of Agricultural Biotechnology, 9(3): 1-24 (In Persian).
3. Allagholipor, M. and Mohamadsalehi, M.S. (2015). Characteristics of Some Local Rice Cultivars in Guilan Province conditions. Ministry of Jihad-Agriculture, Agricultural Research, Education and Extension Organization, Rice Research Institute of Iran. Tehran, IR (In Persian).
4. Bai, X., Luo, L., Yan, W., Kovi, M.R., Zhan, W. and Xing, Y. (2010). Genetic dissection of rice grain shape using a recombinant inbred line population derived from two contrasting parents and fine mapping a pleiotropic quantitative trait locus qGL7. BMC Genetics, 11: 1-16. [DOI:10.1186/1471-2156-11-16]
5. Basten, C.J., Weir, B.S. and Zeng, Z.B. (2001). QTL Cartographer: A Reference Manual and Tutorial for QTL Mapping. North Carolina State University Press, Rigley, North Carolina, USA.
6. Bian, J.M., He, H.H., Li, C.J., Shi, H., Zhu, C.L., Peng, X.S., Fu, J.R., He, X.P., Chen, X.R., Hu, L.F. and Ouyang, L.J. (2013). Identification and validation of a new grain weight QTL in rice. Genetics Molecular Research, 12(4): 5623-5633. [DOI:10.4238/2013.November.18.11]
7. Courtois, B., Ahmadi, N., Khowaja, F., Price, A.H., Rami, J.F., Frouin, J., Hamelin, C.H. and Ruiz, M. (2009). Rice root genetic architecture: meta-analysis from a drought QTL database. Rice, 2: 115-128. [DOI:10.1007/s12284-009-9028-9]
8. Ebadi, A.A., Farshadfar, E. and Rabiei, B. (2013). Analysis of quantitative trait loci for rice cooking and eating quality based on an Iranian RILs population. Crop Biotechnology, 3(2): 59-72 (In Persian).
9. Fan, C., Xing, Y., Mao, H., Lu, T., Han, B. and Xu, C. (2006). GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theoretical and Applied Genetics, 112: 1164-1171. [DOI:10.1007/s00122-006-0218-1]
10. Fotokian, M.H., Ahamadi, G., Amiri Oghan, H., Sadatnori, A., Naji, A.M., Mohammadinejad, G., Mohaddes, A. and Agahi, K. (2009). Introduction of quantitative trait loci related to plant height, number of tiller and flag leaf length and width in rice (Oryza sativa L.) using microsattelite markers. Iranian Journal of Biology, 23(2): 488-497 (In Persian).
11. Ishimaru, K., Hirotsu, N., Madoka, Y., Murakami, N., Hara, N. and Onodera, H. (2013). Loss of V function of the IAAglucose hydrolase gene TGW6 enhances rice grain weight and increases yield. Nature Genetics, 45: 707-711. [DOI:10.1038/ng.2612]
12. Kaviani Charati, A., Sabouri, H., Fallahi, H.A. and Jorjani, E. (2016). QTL mapping of spike characteristics in barley using F3 and F4 families derived from Badia × Komino cross. Plant Genetic Researches, 3(1): 13-28 (In Persian). [DOI:10.29252/pgr.3.1.13]
13. Kosambi, D.D. (1944). The estimation of map distances from recombination values. Annual Eugen, 12: 172-175. [DOI:10.1111/j.1469-1809.1943.tb02321.x]
14. Kwon, S.J., Cho, Y.C., Kwon, S.W., Oh, C.S., Suh, J.P., Shin, Y.S., Kim, Y.J., Holligan, D., Wessler, S.R., Hwang, H.G. and Ahn, S.N. (2008). QTL mapping of agronomic traits using an RIL population derived from a cross between temperate japonica cultivars in rice (Oryza sativa L.). Breeding Science, 58: 271-279. [DOI:10.1270/jsbbs.58.271]
15. Li, S.B., Zhang, Z.H., Hu, Y., Li, C.Y., Jiang, X., Mao, T., Li, Y.S. and Zhu, Y.G. (2006). Genetic dissection of developmental behavior of crop growth rate and its relationships with yield and yield related traits in rice. Plant Science, 170: 911-917. [DOI:10.1016/j.plantsci.2005.12.005]
16. Li, Y., Fan, C., Xing, Y., Jiang, Y., Luo, L. and Sun, L. (2011). Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nature Genetics, 43: 1266-1269. [DOI:10.1038/ng.977]
17. Lin, H.X., Zhu, M.Z., Yano, M., Gao, J.P., Liang, Z.W., Su, W.A., Hu, X.H., Ren, Z.H. and Chao, D.Y. (2004). QTLs for Na and K uptake of the shoots and roots controlling rice salt tolerance. Theoretical and Applied. Genetics, 108: 253-260. [DOI:10.1007/s00122-003-1421-y]
18. Liu, B.H. (1998). Statistical Genomics; Linkage, Mapping and QTL Analysis. CRC Press, Florida, USA.
19. Manly, K.F. and Olson, J.M. (1999). Overview of QTL mapping software an introduction to map manager QT. Mammalian Genome, 10: 327-334. [DOI:10.1007/s003359900997]
20. Mc Couch, S.R., Teytelman, L., Xu, Y., Lobos, K., Clare, K. and Walton, M. (2002). Development of 2243 new SSR markers for rice by the international rice microsatellite initiative. Proceeding of the First International Rice Congress, Shanghai, China.
21. Movafegh, S., Rabiee, B., Zare Feizabadi, A. and Taheri, G. (2009). Mapping QTLs controlling yield in two Iranian rice cultivars-F2 populations. Iranian Journal of Agricultural Research, 7(2): 673-683 (In Persian).
22. Nelson, J.C. (1997). QGENE: software for marker-based genomic analysis and breeding. Molecular Breeding, 3(3): 239-245. [DOI:10.1023/A:1009604312050]
23. Ni, J.J., Wu, P., Senadhira, D. and Huang, N. (1998). Mapping QTLs for phosphorus deficiency tolerance in rice. Theoretical and Applied Genetics, 97: 1361-1369. [DOI:10.1007/s001220051030]
24. Qi, P., Lin, Y., Song, X., Shen, J., Huang, W. and Shan, J. (2012). The novel quantitative trait locus GL3. 1 controls rice grain size and yield by regulating Cyclin-T1;3. Cell Research, 22: 1666-1680. [DOI:10.1038/cr.2012.151]
25. Rabiei, B. and Sabouri, H. (2008). Mapping Genes Controlling Quantitative Traits. University of Guilan Press, Guila, IR (In Persian).
26. Rabiei, B., Masaeli, M. and Torang, A.R. (2013). Identification Loci for controlling of seed yield and yield components of rice. Iranian Journal of Crop Science, 44(2): 293-304 (In Persian).
27. Sabouri, H. and Katouzi, M. (2014). Detection of chromosomal regions controlling drought osmotic stress in rice. Journal of Agricultural Biotechnology, 6(2): 91-100 (In Persian).
28. Sabouri, H., Katouzi, M. and Khataminejad, R. (2011). Role of 1 and 6 chromosomes in genetic control of farm traits in rice. Modern science of Sustainable Agriculture, 7(3): 29-35 (In Persian).
29. Sabouri, H., Sabouri, A. and Khataminejad, R. (2012). QTL locating of some traits related to drought tolerance in rice. Production and Processing of Agricultural and Horticultural Products, 2(4): 1-11 (In Persian).
30. Saghai Maroof, M.A., Biyashev, R.M., Yang, G.P., Zhang, Q. and Allard, R.W. (1994). Extraordinarily polymorphic microsatellites DNA in barely species diversity, chromosomal location, and population dynamics. Proceeding of National Academy Science USA, 91: 5466-5570. [DOI:10.1073/pnas.91.12.5466]
31. Sheykhpour Ahandani, M., Rabiee, B. and Shirzadian Khoramabad, R. (2013). Identification of QTLs linked to plant height and maturity time in rice. Iranian Journal of Crop Sciences, 15(2): 107-120 (In Persian).
32. Shomura, A., Izawa, T., Ebana, K., Ebitani, T., Kanegae, H. and Konishi, S. (2008). Deletion in a gene associated with grain size increased yields during rice domestication. Nature Genetics, 40: 1023-1028. [DOI:10.1038/ng.169]
33. Song, X.J., Huang, W., Shi, M., Zhu, M.Z. and Lin, H.X. (2007). A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nature Genetics, 39: 623-630. [DOI:10.1038/ng2014]
34. Thomson, M.J., Tai, T.H., McClung, A.M., Lai, X.H., Hinga, M.E., Lobos, K.B., Xu, Y., Martinez, C.P. and McCouch, S.R. (2003). Mapping quantitative trait loci for yield, yield components and morphological traits in an advanced backcross population between Oryza rufipogon and the Oryza sativa cultivar Jefferson. Theoretical and Applied Genetics, 107: 479-493. [DOI:10.1007/s00122-003-1270-8]
35. Tian, R., Jiang, G.H., Shen, L.H., Wang, L.Q. and He, Y.Q. (2005). Mapping quantitative trait loci underlying the cooking and eating quality of rice using a DH population. Molecular Breeding, 15: 117-124. [DOI:10.1007/s11032-004-3270-z]
36. Wang, E., Wang, J., Zhu, X., Hao, W., Wang, L. and Li, Q. (2008). Control of rice grain-filling and yield by a gene with a potential signature of domestication. Nature Genetics, 40: 1370-1374. [DOI:10.1038/ng.220]
37. Wang, S., Wu, K., Yuan, Q., Liu, X., Liu, Z. and Lin, X. (2012). Control of grain size, shape and quality by OsSPL16 in rice. Nature Genetics, 44: 950-954. [DOI:10.1038/ng.2327]
38. Xing, Y. and Zhang, Q. (2010). Genetic and molecular bases of rice yield. Annual Review Plant Biology, 61: 421-442. [DOI:10.1146/annurev-arplant-042809-112209]
39. Xu, F., Sun, X., Chen, Y., Huang, Y., Tong, C. and Bao, J. (2015). Rapid identification of major QTLs associated with rice grain weight and their utilization. PLoS ONE, 10(3): e0122206. [DOI:10.1371/journal.pone.0122206]
Send email to the article author



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Jafarzadeh Razmi M R, Navabpour S, Sabouri H, Ramezanpour S S. qGW, a Stable and Major QTL for Increasing of Grain Weight in Rice (Oryza sativa L.). pgr 2020; 6 (2) :173-182
URL: http://pgr.lu.ac.ir/article-1-138-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 6, Issue 2 (2020) Back to browse issues page
پژوهش های ژنتیک گیاهی Plant Genetic Researches
Persian site map - English site map - Created in 0.06 seconds with 38 queries by YEKTAWEB 4657