[صفحه اصلی ]   [Archive] [ English ]  
:: صفحه اصلي :: درباره نشريه :: آخرين شماره :: تمام شماره‌ها :: جستجو :: ثبت نام :: ارسال مقاله :: تماس با ما ::
بخش‌های اصلی
صفحه اصلی::
اطلاعات نشریه::
آرشیو مجله و مقالات::
برای نویسندگان::
برای داوران::
ثبت نام و اشتراک::
تماس با ما::
تسهیلات پایگاه::
بایگانی مقالات زیر چاپ::
فهرست داوران همکار::
::
جستجو در پایگاه

جستجوی پیشرفته
..
دریافت اطلاعات پایگاه
نشانی پست الکترونیک خود را برای دریافت اطلاعات و اخبار پایگاه، در کادر زیر وارد کنید.
..
ISSN
شاپای آنلاین: ISSN 2676-7309
شاپای چاپی: ISSN 2383-1367
..




 
..
:: دوره 6، شماره 1 - ( 1398 ) ::
جلد 6 شماره 1 صفحات 30-1 برگشت به فهرست نسخه ها
کاربرد نشانگرهای مولکولی DNA در به‌نژادی گیاهان
سیدعلی‌محمد میرمحمدی میبدی* ، پوراندحت گلکار
گروه زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه صنعتی اصفهان، اصفهان ، maibody@cc.iut.ac.ir
چکیده:   (18789 مشاهده)
به‌نژادی با هدف بهبود کمی و کیفی گیاهان، طیف گسترده‌ای از روش‌ها و فنون را به کار گرفته است. نشانگرهای ملکولی از ابزارهایی هستند که چشم‌انداز جدیدی را برای پیشرفت‌های به‌نژادی گیاهان فراهم کرده‌‌اند. این مقاله مزایا و کاربردهای متنوع نشانگرهای مولکولی و بهره‌گیری از توان بالای پلی‌مورفیسم طبیعی موجود در داخل جوامع در تلفیق با توانمندی‌های روش‌های به‌نژادی گیاهی مرسوم را مرور کرده است. نشانگرهای مولکولی از عوامل محیطی تأثیرپذیری ندارند و فراوانی بالای آنها از نظر تعداد و تنوع بالای ساختاری آنها به عنوان بخشی از مزایای نشانگرها در تشخیص هویت، تعیین تنوع ژنتیکی گونه‌ها و بررسی روابط خویشاوندی گیاهان به شمار می‌رود. نشانگرها در کشف اطلاعات بیشتر در مورد حفظ کلکسیون‌های ذخایر ژنتیکی گیاهی، تشخیص واریته‌ها، مکان‌یابی و تعیین تعداد ژن‌های کنترل‌کننده صفات کمک می‌کنند. توالی‌یابی ژنوم، تهیه نقشه‌های فیزیکی و ژنتیکی، انگشت‌نگاری‌های ژنومی و به‌نژادی گیاهان به عنوان برخی از دیگر کاربردهای این ابزار در به‌نژادی گیاهی می‌باشد. کارایی بالای انتخاب به کمک نشانگر در انتخاب ژنوتیپ‌ها به عنوان والد تلاقی و انتخاب به کمک نشانگر در برنامه‌های به‌نژادی و انتخاب ژنومی تأکید شده است. فناوری‌های جدید فرصت‌های خوبی را برای یافتن الگوهای تنوع ژنتیکی برای پیشبرد برنامه‌های به‌نژادی ایجاد کرده‌اند. امروزه با توسعه سریع فناوری توالی‌یابی‌های نسل جدید، توالی‌یابی ژنومی و روش‌های با کارایی بالا برای نشانگرها، ایجاد نشانگرهای جدید مانند EST-SSR از Simple Sequence Repeats (SSR) و Single Nucleotide Polymorphisms (SNPs) را آسان کرده است. این نشانگرها می‌توانند با موفقیت در شتاب‌بخشی به تحقیقات و برنامه‌های به‌نژادی گیاهان زراعی به‌کار گرفته شوند.
واژه‌های کلیدی: انتخاب، به نژادی، تنوع ژنتیکی، نشانگر مولکولی
متن کامل [PDF 1372 kb]   (7711 دریافت)    
نوع مطالعه: پژوهشي |
فهرست منابع
1. Aghaee-Sarbarzeh, M., Singh, H. and Dhaliwal, H.S. (2001). A microsatellite marker linked to leaf rust resistance transferred from Aegilops triuncialis into hexaploid wheat. Plant Breeding, 120: 259-261. [DOI:10.1046/j.1439-0523.2001.00598.x]
2. Amom, T. and Nongdam, P. (2017). The use of molecular marker methods in plants: a review. International Journal of Current Research and Review, 9: 1-7.
3. Avise, J.C. )2012(. Molecular Markers, Natural History and Evolution. Springer Science & Business Media, Berlin, DE.
4. Babiker, E., Yen, Y., Stein, J. (2009). Identification of a microsatellite marker associated with Stem rust resistance gene Sr35 in wheat. Australian Journal of Crop Science, 34: 1835-1850.
5. Barclay, A. (2004). Feral Play: Crop Scientists Use Wide Crosses to Breed into Cultivated Rice Varieties the Hardiness of their Wild. Rice Today, IRRI, Los Banos, PH.
6. Barzan, Z., Dehdari, M. and Amiri Fahliani, R. (2015). Study of genetic diversity in rapeseed (Brassica napus L.) genotypes using microsatellite markers. Agricultural Biotechnology Journal, 7(1): 29-42.
7. Bernardo, R. and Charcosset, A. (2006). Usefulness of gene information in marker-assisted recurrent selection: a simulation appraisal. Crop Science, 46: 614-621. [DOI:10.2135/cropsci2005.05-0088]
8. Bernardo, R. and Yu, J. (2007). Prospects for genome-wide selection for quantitative traits in maize. Crop Science, 47: 1082-1090. [DOI:10.2135/cropsci2006.11.0690]
9. Bhau, B.S., Sharma, D.K., Bora, M., Gosh, S., Puri, S., Borah, B., Kumar, D.G. and Wann, S.B. (2016). Molecular markers and Crop Improvement: Abiotic Stress Response in Plants. Wiley-VCH Verlag GmbH & Co. KGaA-Weinheim, DE. [DOI:10.1002/9783527694570.ch17]
10. Bindler, G., Van Der Hoeven, R., Gunduz, I., Plieske, J., Ganal, M., Rossi, L., Gadani, F. and Donini, P. (2007). A microsatellite marker based linkage map of tobacco. Theoretical and Applied Genetics, 114(2): 341-349. [DOI:10.1007/s00122-006-0437-5]
11. Bisht, S.S. and Panda, A.K. (2014). DNA Sequencing: Methods and Applications. Advances in Biotechnology, Springer, New Delhi, Delhi, IND. [DOI:10.1007/978-81-322-1554-7_2]
12. Bouchez, A., Hospital, F., Causse, M., Gallais, A., Charcosset, A. (2002). Marker-assisted introgression of favorable alleles at quantitative trait loci between maize elite lines. Genetics, 162: 1945-1959.
13. Brachi, B., Morris, G.P. and Borevitz, J.O. (2011). Genome-wide association studies in plants: the missing heritability is in the field. Genome Biology, 12(10): 232-238. [DOI:10.1186/gb-2011-12-10-232]
14. Brar, D. and Kush, G. (1997). Alien introgression in Rice. Plant Molecular Biology, 35: 35-47. [DOI:10.1007/978-94-011-5794-0_4]
15. Prescott-Allen, C. and Prescott-Allen, R. (1988). Genes from the Wild: Using Wild Genetic Resources for Food and Raw Materials. Routledge, Taylor & Francis, London, UK.
16. Brar, D.S. and Dhaliwal, H.S. (1997). Molecular Markers and their Application in Crop Improvement. In: Bajwa, M.S., Dhillon, J.S., Dilawari, V.K. and Chahal S.S., Eds., Proceedigs of the 3rd Agricultural Science Congress. Invited Papers, pp. 175-192. National Academy of Agricultural Sciences, New Delhi, IND.
17. Byrne, M., Murrell, J.C., Owen, J.V., Kriedemann, P., Williams, E.R. and Moran, G.F. (1997). Identification and mode of action of quantitative trait loci affecting seedling height and leaf area in Eucalytpus nitens. Theoretical and Applied Genetics, 94: 674-681. [DOI:10.1007/s001220050465]
18. Castro, A.J., Capettini, F.L.A.V.I.O., Corey, A.E., Filichkina, T., Hayes, P.M., Kleinhofs, A.N.D.R.I.S., Kudrna, D., Richardson, K., Sandoval-Islas, S., Rossi, C. and Vivar, H. (2003). Mapping and pyramiding of qualitative and quantitative resistance to stripe rust in barley. Theoretical and Appllied Genetics, 107: 922-930. [DOI:10.1007/s00122-003-1329-6]
19. Cheema, J., Ellis, T.H. and Dicks, J. (2010). THREaD mapper studio: a novel, visual web server for the estimation of genetic linkage maps. Nucleic Acids Research, 38: 188-193. [DOI:10.1093/nar/gkq430]
20. Coe, E.H., Hoisington, D.A. and Neuffer, M.G. (1987). Linkage Map of Corn (maize) (Zea mays L.). In: O'Brien, S.J., Ed. Genetic Maps. A Compilation of Linkage and Restriction Maps of Genetically Studied Organisms, Vol. 4, pp. 685-707. Cold Spring Harbor Laboratory, New York, USA.
21. Collard, B.C.Y. and Mackill, D. (2008). Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philosophical Transactions of the Royal Society B: Biological Sciences, 363: 557-572. [DOI:10.1098/rstb.2007.2170]
22. Collard, B.C.Y., Jahufer, M.Z.Z., Brouwer, J.B. and Pang, E.C.K. (2005). An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basis concepts. Euphytica, 142: 169-196. [DOI:10.1007/s10681-005-1681-5]
23. Comings, D.E. and MacMurray, J.P. (2000). Molecular heterosis: A review. Molecular Genetics and Metabolism, 71(1): 19-31. [DOI:10.1006/mgme.2000.3015]
24. Crossa, J., Pérez-Rodríguez, P., Cuevas, J., Montesinos-López, O., Jarquín, D., De Los Campos, G., Burgueño, J., González-Camacho, J.M., Pérez-Elizalde, S., Beyene, Y., Dreisigacker, S., Singh, R., Zhang, X., Gowda, M., Roorkiwal, M., Rutkoski, J. and Varshney, R.K. (2017). Genomic selection in plant breeding: methods, models, and perspectives. Trends in Plant Science, 22(11): 961-975. [DOI:10.1016/j.tplants.2017.08.011]
25. Davar, R., Darvishzadeh, R., Rezaee Danesh, Y., Kholghi, M., Azizi, M. and Shah, D.A. (2012). Single sequence repeat markers associated with partial resistance in sunflower to Phoma macdonaldii. Phytopathologia Mediterranea, 51(3): 541-548.
26. De Los Campos, G., Hickey, J.M., Pong Wong, R., Daetwyler, H.D. and Calus, M.P. (2013). Whole genome regression and prediction methods applied to plant and animal breeding. Genetics, 93: 327-345. [DOI:10.1534/genetics.112.143313]
27. Devos, K.M. and Gale, M.D. (1997). Comparative genetics in the grasses. Plant Molecular Biology, 35: 3-15. [DOI:10.1007/978-94-011-5794-0_1]
28. Dubey, S.C., Suresh, M. and Singh, B. (2007). Evaluation of Trichoderma species against Fusarium oxysporum f.sp. Ciceris for integrated management of chickpea wilt. Biological Control, 40: 118-127. [DOI:10.1016/j.biocontrol.2006.06.006]
29. Ebrahimi, M.A. and Zienalabedini, M. (2013). Application of genomic and unigene-based microsatellite markers in conservation and management of genetic resources of some Iranian crops. Crop Biotechnology, 4: 133-148 (In Persian).
30. Emebiri, L., Michael, P., Moody, D.B., Ogbonnaya, F.C. and Black, C. (2009). Pyramiding QTLs to improve malting quality in barley: gains in phenotype and genetic diversity. Molecular Breeding, 23: 219-228. [DOI:10.1007/s11032-008-9227-x]
31. Ersoz, E.S., Yu, J. and Buckler, E.S. (2007). Applications of Linkage Disequilibrium and Association Mapping in Crop Plants. In: Varshney, R.K. and Tuberosa, R.T., Eds., Genomics Assisted Crop Improvement: Genomics Approaches and Platforms. pp. 97-120. Springer, Dordrecht, NL. [DOI:10.1007/978-1-4020-6295-7_5]
32. Falque, M. and Santoni, S. (2007). Molecular Markers and High-Throughput Genotyping Analysis. In: Morot-Gaudry J.F., Lea P. and Briat, J.F., Eds., Functional Plant Genomics. pp. 503-527. Taylor & Francis Group, LLC, London, UK. [DOI:10.1201/b10760-30]
33. Faris, J.D., Haen, K.M. and Gill, B.S. (2000). Saturation mapping of a gene-rich recombination hot spot region in wheat. Genetics, 154: 823-835.
34. Fatokun, C.A., Menancio-Hautea, D.I., Danesh, D. and Young, N.D. (1992). Evidence for orthologous seed weight genes in cowpea and mung bean based on RFLP mapping, Genetics, 132: 841-846.
35. Freeling, M. (2001). Grasses as a single genetic system. Reassessment 2001. Plant Physiology, 125: 1191-1197. [DOI:10.1104/pp.125.3.1191]
36. Gale, M.D. and Devos, K.M. (1998). Comparative genetics in the grasses. Proceedings of the National Academy of Sciences of the United States of America, 95: 1971-1974. [DOI:10.1073/pnas.95.5.1971]
37. Garrido-Cardenas, J.A., Mesa-Valle, C. and Manzano-Agugliaro, F. (2018). Trends in plant research using molecular markers. Planta, 247(3): 543-557. [DOI:10.1007/s00425-017-2829-y]
38. Gebhardt, C., Ballvora, A., Walkemeier, B., Oberhagemann, P. and Schuler, K. (2004). Assessing genetic potential in germplasm collections of crop plants by marker-trait association: A case study for potatoes with quantitative variation of resistance to late blight and maturity type. Molecular Breeding, 13: 93-102. [DOI:10.1023/B:MOLB.0000012878.89855.df]
39. Golabadi, M., Arzani, A. and Mirmohammadi Maibody, S.A.M. (2012a). Identification of microsatellite markers associated with grain protein content in durum wheat grown under drought stress at terminal growth stages Cereal Research Communications, 40(2): 215-224. [DOI:10.1556/CRC.40.2012.2.6]
40. Golabadi, M., Arzani, A., Mirmohammadi Maibody, S.A.M., Sayed Tabatabaei, B.E. and Mohammadi, S.A. (2011). Identification of microsatellite markers linked with yield components under drought stress at terminal growth stages in durum wheat. Euphytica, 177: 207-221. [DOI:10.1007/s10681-010-0242-8]
41. Golabadi, M., Arzani, A., Mirmohammadi Maibody, S.A.M. (2012b). Mapping of loci controlling phenological traits in durum wheat under drought stress and non-stress conditions using SSR markers. Iranian Journal of Crop Sciences, 13(4): 712-729 (In Persian).
42. Golkar, P. and Nourbakhsh, V. (2019). Analysis of genetic diversity and population structure in Nigella sativa L. using agronomic traits and molecular markers (SRAP and SCoT). Industrial Crops and Products, 130: 170-178. [DOI:10.1016/j.indcrop.2018.12.074]
43. Golkar, P. and Mokhtari, N. (2018). Molecular diversity assessment of a world collection of safflower genotypes by SRAP and SCoT molecular markers. Physiology and Molecular Biology of Plants, 24(6): 1261-1271. [DOI:10.1007/s12298-018-0545-0]
44. Golkar, P., Arzani, A. and Rezaei, A.M. (2011). Genetic variation in safflower (Carthamus tinctorious L.) for seed quality-related traits and inter-simple sequence repeat (ISSR) markers. International Journal of Molecular Sciences, 12: 2664-2677. [DOI:10.3390/ijms12042664]
45. Govindaraj, M., Vetriventhan, M. and Srinivasan, M. (2015). Importance of genetic diversity assessment in crop plants and its recent advances: an overview of its analytical perspectives. Genetics Research International, 2015: 1-14. [DOI:10.1155/2015/431487]
46. Hackett, C.A. (2002). Statistical methods for QTL mapping in cereals. Plant Molecular Biology, 48 (5-6): 585-599. [DOI:10.1023/A:1014896712447]
47. Hashemi-Petroudi, S.H., Mirmohammadi-Maibody, S.A.M., Arzani, A. and Nematzadeh, G.H. (2011a). Genetic purity testing of rice hybrid seeds using microsatellite markers. Agronomy Journal (Pajouhesh and Sazandegi), 93: 84-92 (In Persian).
48. Hashemi-Petroudi, S.H., Mirmohammadi-Maibody, S.A.M., Nematzadeh, G.H. and Arzani, A. (2011b). Identification of rice hybrids using microsatellite and RAPD markers. African Journal of Biotechnology, 8(10): 2094-2101.
49. Hashemi-Petroudi, S.H., Mirmohammadi-Maibody, S.A.M., Nematzadeh, G.H. and Arzani, A. (2010). Semi-random PCR markers for DNA fingerprinting of rice hybrids and theirs corresponding parents. African Journal of Biotechnology, 9(7): 979-985. [DOI:10.5897/AJB09.1461]
50. Herzog, E. and Frisch, M. (2011). Selection strategies for marker-assisted backcrossing with high-throughput marker systems. Theoretical and Appllied Genetics, 123: 251-260. [DOI:10.1007/s00122-011-1581-0]
51. Honig, J.A., Averello, V., Bonos, S.A. and Meyer, W.A. (2012). Classification of Kentucky bluegrass (Poa pratensis L.) cultivars and accessions based on microsatellite (simple sequence tepeat) markers. Horticultural Science, 47: 1356-1366. [DOI:10.21273/HORTSCI.47.9.1356]
52. Holland, J.B. (2007). Genetic architecture of complex traits in plants. Current Opinion in Plant Biology, 10: 156-161. [DOI:10.1016/j.pbi.2007.01.003]
53. Hosseini, S.Z., Ismaili, A., Nazarian Firouzabadi, F., Fallahi, H. and Rezaeinejad, A. (2018). Development of EST-SSR microsattelite markers related to drought tolerance in lentile (lens culinaris). Crop Biotechnology, 23: 43-57 (In Persian).
54. Huang, Y., Millett, B.P., Beaubien, K.A., Dahl, S.K., Steffenson, B.J., Smith, K.P. and Muehlbauer, G.J. (2013) Haplotype diversity and population structure in cultivated and wild barley evaluated for Fusarium head blight responses. Theoretical and Applied Genetics, 126(3): 619-36. [DOI:10.1007/s00122-012-2006-4]
55. Jain, S.M., Brar, D.S. and Ahloowalia, B.S. (2010). Molecular Techniques in Crop Improvement. Springer, New York, USA. [DOI:10.1007/978-90-481-2967-6]
56. Jansen, R.C. and Nap, J.P. (2001). Genetical genomics: the added value from segregation. Trends in Genetics, 17: 388-391. [DOI:10.1016/S0168-9525(01)02310-1]
57. Jehan, T., Vashishtha, A., Yadav, S.R. and Lakhanpaul, S. (2014). Genetic diversity and genetic relationships in Hyacinthaceae in India using RAPD and SRAP markers. Physiology and Molecular Biology of Plants, 20(1): 103-114. [DOI:10.1007/s12298-013-0206-2]
58. Jena, K.K. and Mackill, D.J. (2008). Molecular markers and their use in marker-assisted selection in Rice. Crop Science, 48: 1266-1276. [DOI:10.2135/cropsci2008.02.0082]
59. Johnson, R. (2004). Marker-assisted selection. Plant Breeding Review, 24: 293-309. [DOI:10.1002/9780470650240.ch13]
60. Jonah, P.M., Bello, L.L., Lucky, O., Midau, A. and Moruppa, S.M. (2011). The importance of molecular markers in plant breeding programmes. Global Journal of Science Frontier Research, 11(5): 4-12.
61. Kilian, A., Kudrna, D.A., Kleinhofs, A., Yano, M., Karata, N., Steffenson, B. and Sasaki, T. (1995). Rice-barley synteny and its application to saturation mapping of the barley Rpg1 region. Nucleic Asids Research, 23: 2729-2733. [DOI:10.1093/nar/23.14.2729]
62. Knapp, S.J. (1998). Marker-assisted selection as a strategy for increasing the probability of selecting superior genotypes. Crop Science, 38: 1164-1174. [DOI:10.2135/cropsci1998.0011183X003800050009x]
63. Kraakman, A.T.W., Martínez, F., Mussiraliev, B., Van Eeuwijk, F.A. and Niks, R.E. (2006). Linkage disequilibrium mapping of morphological, resistance and other agronomically relevant traits in modern spring barley cultivars. Molecular Breeding, 17(1): 41-58. [DOI:10.1007/s11032-005-1119-8]
64. Kumar, P., Gupta, V.K., Misra, A.K., Modi, D.R. and Pandey, B.K. (2009). Potential of molecular markers in plant biotechnology. Plant Omics Journal, 2(4): 141-162.
65. Ma, C., Fu, T., Bengtsson, L., Gertsson, B., Dayteg, C. and Tuvesson, S. (2003). Genetic diversity of Chinese and Swedish Brassica napus cultivars based on Inter-SSR PCR markers and its relationship to hybrid performance. Journal of Swedish Seed Association, 2: 67-77.
66. McCouch, S.R., Kochert, G., Yu, Z.H., Wang, Z.Y., Khush, G.S., Coffman, W.R. and Tanksley, S.D. (1988). Molecular mapping of rice chromosomes Theoretical and Applied Genetics, 76: 815-829. [DOI:10.1007/BF00273666]
67. Melchinger A.E., Winter, M., Mi, X., Piephob, H.P., Schippracka, W. and Mirditaa, V. (2015). Controlling misclassification rates in identification of haploid seeds from induction crosses in maize with high-oil inducers. Crop Science, 55(3): 1076-1086. [DOI:10.2135/cropsci2014.09.0633]
68. Melchinger, A.E. and Gumber, R.K. (1998). Overview of Heterosis and Heterotic Groups in Agronomic Crops, In: Lamkey, K.R. and Staub J.E., Eds., Concepts and Breeding of Heterosis in Crop Plants. pp. 29-44. Crop Science Society of America, Madison, WI.
69. Metzker, M.L. (2010) Sequencing technologies-the next generation. Nature Reviews Genetics, 11(1): 31-46. [DOI:10.1038/nrg2626]
70. Meyer, L., Causse, R., Pernin, F., Scalone, R., Bailly, G., Chauvel, B., Délye, C. and Le Corre, V. (2017). New gSSR and EST-SSR markers reveal high genetic diversity in the invasive plant Ambrosia artemisiifolia L., can be transferred to other invasive Ambrosia species. Public Library of Science (PloS One), 12: e0176197. [DOI:10.1371/journal.pone.0176197]
71. Mirmohammady Maibody, S.A.M. (2008). Principles and Fundamentals of Plant Breeding. Isfahn University of Technology Publiction centre, Isfahan, IR.
72. Mirzahashemi, M., Mohammadi-Nejad, G. and Golkar, P. (2015). A QTL linkage map of safflower for yield under drought stress at reproductive stage. Iranian Journal of Genetics and Plant Breeding, 4(2): 20-27.
73. Mohammadi-Nejad, G., Arzani, A., Rezai, A.M., Singh, R.K. and Gregorio, G.B. (2008). Assessment of rice genotypes for salt tolerance using microsatellite markers associated with the saltol QTL. African Journal of. Biotechnology, 7(6): 730-736.
74. Mohan, M., Nair, S., Bhagwat, A., Krishna, T.G., Yano, M., Bhatia, C.R. and Sasaki, T. (1997). Genome mapping, molecular markers and marker-assisted selection in crop plants. Molecular Breeding, 3: 87-103. [DOI:10.1023/A:1009651919792]
75. Nadeem, M.Z., Nawaz, M.N., Shahid, M.Q., Doğan, Y., Comertpay, G., Yıldız, M., Hatipoğlu, R., Ahmad, F., Alsaleh, A., Labhane, N.O., Zkan, H., Chung, G. and Baloch, F.S. (2018). DNA molecular markers in plant breeding: current status and recent advancements in genomic selection and genome editing. Biotechnology and Biotechnological Equipment, 32(2): 261-285. [DOI:10.1080/13102818.2017.1400401]
76. Nandakumar, N., Singh, A.K., Sharma, R.K., Mohapatra, T., Prabhu, K.V. and Zaman, F.U. (2004). Molecular fingerprinting of hybrids and assessment of genetic purity of hybrid seeds in rice using microsatellite markers. Euphytica, 136: 257-264. [DOI:10.1023/B:EUPH.0000032706.92360.c6]
77. Neeraja, C.N., Rodriguez, R.M., Pamplona, A., Heuer, S., Collard, B.C.Y., Steptingsih, E.M., Vergara, G., Sanchez, D., Xu, K., Ismail, A.M. and Mackill, D.J. (2007). A marker-assisted backcross approach for developing submergence tolerant rice cultivars. Theoretical and Applied Genetics, 115(6): 767-776. [DOI:10.1007/s00122-007-0607-0]
78. Paterson, A.H. (1996). Making Genetic Maps. In: Paterson, A.H., Ed., Genome, Genome mapping, in Plants, pp. 23-39. TX: R G Landes Company, Austin, Texas, USA.
79. Pereira, M.G., Lee, M., Bramel-Cox, P., Woodman, W., Doebley, J., Whitkus, R. (1994). Construction of an RFLP map in sorghum and comparative mapping in maize. Genome, 37: 236-243. [DOI:10.1139/g94-033]
80. Platten, J.D., Cobb, J.N. and Zantua, R.E. (2019). Criteria for evaluating molecular markers: comprehensive quality metrics to improve marker-assisted selection. PLoS One. 14(1): e0210529. [DOI:10.1371/journal.pone.0210529]
81. Poczai, P., Varga, I., Laos, M., Cseh, A., Bell, N., Valkonen, J.P. and Hyvonen, J. (2013). Advances in plant gene-targeted and functional markers: a review. Plant Methods, 9(1): 6. [DOI:10.1186/1746-4811-9-6]
82. Qi, L.L., Echalier, B., Chao, S., Lazo, G.R., Butler, G.E., Anderson, O.D., Akhunov, E.D., Dvorák, J., Linkiewicz, A.M., Ratnasiri, A., Dubcovsky, J., Bermudez-Kandianis, C.E., Greene, R.A., Kantety, R., La Rota, C.M., Munkvold, J.D., Sorrells, S.F., Sorrells, M.E., Dilbirligi, M., Sidhu, D., Erayman, M., Randhawa, H.S., Sandhu, D., Bondareva, S.N., Gill, K.S., Mahmoud, A.A., Ma, X.F., Miftahudin, Gustafson, J.P., Conley, E.J., Nduati, V., Gonzalez-Hernandez, J.L., Anderson, J.A., Peng, J.H., Lapitan, N.L., Hossain, K.G., Kalavacharla, V., Kianian, S.F., Pathan, M.S., Zhang, D.S., Nguyen, H.T., Choi, D.W., Fenton, R.D., Close, T.J., McGuire, P.E., Qualset, C.O. and Gill, B.S. (2004). A chromosome bin map of 16,000 expressed sequence tag loci and distribution of genes among the three genomes of polyploid wheat. Genetics, 168: 701-712.
83. Raggi, L., Bitocchi, E., Russi, L., Marconi, G., Sharbel, T.F., Veronesi, F. and Albertini, E. (2015). Understanding genetic diversity and population structure of a Poa pratensis worldwide collection through morphological, Nuclear and Chloroplast Diversity Analysis. Public Library of Science (PLoS One), 10: e0124709. [DOI:10.1371/journal.pone.0124709]
84. Rajib, R., Abdelmoumen, T., Hakeem, K.R., Mohamed, R.A.G. and Tah, J. (2013). Molecular Marker-Assisted Technologies for Crop Improvement. In: Roychowdhury, R., Ed., Crop Improvement in the Era of Climate Change, pp. 241-258. International Publication House, Pvt. Ltd; Delhi, IND.
85. Rao, V.R. and Hodgkin, T. (2002). Genetic diversity and conservation and utilization of plant genetic resources. Plant Cell, Tissue and Organ Culture, 68(1): 1-19. [DOI:10.1023/A:1013359015812]
86. Reddy, M.P., Sarla, N. and Siddiq, E.A. (2002). Inter simple sequence repeat (ISSR) polymorphism and its application in plant breeding. Euphytica, 128 (1): 9-17. [DOI:10.1023/A:1020691618797]
87. Ren, N. and Timko, M.P. (2001). AFLP analysis of genetic polymorphism and evolutionary relationships among cultivated and wild Nicotiana species. Genome, 44(4): 559-571. [DOI:10.1139/gen-44-4-559]
88. Ribaut, J.M. and Betrán, J. (1999). Single large-scale marker-assisted selection (SLS-MAS). Molecular Breeding, 5(6): 531-541. [DOI:10.1023/A:1009631718036]
89. Ripamonti, C., Orenstein, A., Kutty, G., Huang, L., Schuhegger, R. and Sing, A. (2009). Restriction fragment length polymorphism typing demonstrates substantial diversity among Pneumocystis jirovecii isolates. The Journal of Infectious Diseases, 200(10): 1616-22. [DOI:10.1086/644643]
90. Roychowdhury, R. and Tah, J. (2013). Mutagenesis A Potential Approach for Crop Improvement. In: Hakeem, K.R., Ahmad, P. and Ozturk, M., Eds., Crop Improvement: New Approaches and Modern Techniques, pp. 149-187. Springer, New York, USA. [DOI:10.1007/978-1-4614-7028-1_4]
91. Samiei, K., Arzani, A. and Mirmohammadi Maibody, S.A.M. (2008). Genetic diversity of Persian clover populations using semi-random markers. Journal of Science and Technology of Agriculture and Natural Resources, 12(45): 157-164 (In Persian).
92. Schena, M. (1998) Microarrays: biotechnology's discovery platform for functional genomics. Trends in Biotechnology, 16: 301-306. [DOI:10.1016/S0167-7799(98)01219-0]
93. Schuster, S.C. (2007). Next-generation sequencing transforms today's biology. Nature Methods, 5(1): 16. [DOI:10.1038/nmeth1156]
94. Sehgal, D., Singh, R. and Rajpal, V.R. (2016). Quantitative Trait Loci Mapping in Plants: Concepts and Approaches. In: Rajpal, V., Rao S. and Raina, S., Eds., Molecular Breeding for Sustainable Crop Improvement, pp. 31-59. Springer International, New York, USA. [DOI:10.1007/978-3-319-27090-6_2]
95. Shahid, M.Q., Chen, F.Y., Li, H.Y., Wang, S.Z., Chen, P.F., Lin, S.Q., Liu, X.D. and Lu, Y.G. (2013). Double-neutral genes, and, for pollen fertility in rice to overcome Indica × Japonica hybrid sterility. Crop Science, 53(1): 164-176. [DOI:10.2135/cropsci2012.07.0451]
96. Sharma, K.D., Winter, P., Kahl, G. and Muehlbauer, F.J. (2004). Molecular mapping of Fusarium oxysporum f.sp. Ciceris race 3 resistance gene in chickpea. Theoretical and Appllied Genetics, 108: 1243-1248. [DOI:10.1007/s00122-003-1561-0]
97. Tang, F., Tao, Y., Zhao, T. and Wang G. (2006). In vitro production of haploid and doubled haploid plants from pollinated ovaries of maize (Zea mays). Plant Cell Tissue Organ Culture, 84 (2): 233-237. [DOI:10.1007/s11240-005-9017-7]
98. Tanksley, S.D. and McCouch, S.R. (1997). Seed banks and molecular maps: Unlocking genetic potential from the wild, Science, 277: 1063-1066. [DOI:10.1126/science.277.5329.1063]
99. Tanksley, S.D. and Nelson, J.C. (1996). Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theoretical and Applied Genetics, 92: 191-203. [DOI:10.1007/s001220050114]
100. Thornsberry, J.M., Goodman, M.M. Doebley, J., Kresovich, S., Nielsen, D. and Buckler, E.S. (2001). Dwarf polymorphisms associate with variation in flowering time. Nature Genetics, 28(3): 286-289. [DOI:10.1038/90135]
101. Till, B.J., Comai, L. and Henikoff, S. (2007). TILLING and EcoTILLING for Crop Improvement. In: Varshney, R.K. and Tuberosa, R., Eds., Genomic Assisted Crop Improvement: Genomics Approaches and Platforms, pp. 333-349. Springer, New York, USA. [DOI:10.1007/978-1-4020-6295-7_15]
102. Torres, A.M. (2010). Application of Molecular Markers for Breeding Disease Resistant Varieties in Crop Plants. In: Mohan, J.S. and Brar, D.S., Eds., Molecular Techniques in Crop Improvement, pp. 185-205. Springer, Dordrecht, NL. [DOI:10.1007/978-90-481-2967-6_8]
103. Torres, A.M., Avila, C.M., Gutierrez, N., Palomino, C., Moreno, M.T. and Cubero, J.I. (2010). Marker assisted selection in fababean (Vicia faba L.). Field Crop Research, 115: 243-252. [DOI:10.1016/j.fcr.2008.12.002]
104. Van Os, H., Andrzejewski, S., Bakker, E., Barrena, I., Bryan, G.J., Caromel, B., Ghareeb, B., Isidore, E., De Jong, W., Van Koert, P., Lefebvre, V., Milbourne, D., Ritter, E., Van der Voort, J.N.A.M.R., Rousselle-Bourgeois, F., Van Vliet, J., Waugh, R., Visser, R.G.F., Bakker, J. and Van Eck, H.J. (2006). Construction of a 10,000 marker ultra-dense genetic recombination map of potato: providing a framework for accelerated gene isolation and a genomewide physical map. Genetics, 173: 1075-1087. [DOI:10.1534/genetics.106.055871]
105. Varshney, R.K. and Dubey, A. (2009). Novel genomic tools and modern genetic and breeding approaches for crop Improvement. Journal of Plant Biochemistry and Biotechnology, 18(2): 127-138. [DOI:10.1007/BF03263311]
106. Varshney, R.K., Hoisington, D.A. and Tyagi, A.K. (2006). Advances in cereal genomics and applications in crop breeding. Trends in Biotechnology, 24: 490-499. [DOI:10.1016/j.tibtech.2006.08.006]
107. Varshney, R.K., Langridge, P. and Graner, A. (2007). Application of genomics for molecular breeding of wheat and barley. Advances in Genetics, 58: 122-155. [DOI:10.1016/S0065-2660(06)58005-8]
108. Varshney, R.K., Graner, A. and Sorrells, M.E. (2005). Genomics-assisted breeding for crop improvement. Trends in Plant Science, 10: 621-630. [DOI:10.1016/j.tplants.2005.10.004]
109. Wang, H., Zhang, X., Yang, H., Liu, X., Li, H., Yuan, L., Li, W., Fu, Z., Tang, J. and Kang, D. (2016). Identification of heterotic loci associated with grain yield and its components using two CSSL test populations in maize. Scientific Reports, 6: 38205. [DOI:10.1038/srep38205]
110. Wang, Y., Cai, Q., Xie, H., Wu, F., Lian, L., He, W., Chen, L., Xie, H. and Zhang, J. (2018). Determination of heterotic groups and heterosis analysis of yield performance in indica Rice. Rice Science, 25(5): 261-269. [DOI:10.1016/j.rsci.2018.08.002]
111. Wang, Z.F., Wang, J.F., Bao, Y.M., Wu, Y.Y. and Zhang H.S. (2011). Quantitative trait loci controlling rice seed germination under salt stress. Euphytica, 178: 297-307. [DOI:10.1007/s10681-010-0287-8]
112. White, R. and Lalouel, J.M. (1988). Chromosome mapping with DNA markers. Scientific American, 258(2): 40-49. [DOI:10.1038/scientificamerican0288-40]
113. Wijerathna, Y.M.A.M. (2015). Marker assisted selection: biotechnology tool for rice molecular breeding. Advances in Crop Science and Technology, 3(4): 187-190.
114. Wu, L. and Wang, C. (2011). Application of molecular marker assisted selection in gene pyramiding and selection of new cultivars. Journal of Northeast Agricultural University (English Edition), 18(1): 79-84. [DOI:10.1016/S1006-8104(13)60088-4]
115. Wu, W.R. and Li, W.M. (1996). Joint mapping of quantitative trait loci using F2 populations. Theoretical and Applied Genetics, 93: 1156-1160. [DOI:10.1007/BF00230140]
116. Xing, L.I., Hailong, Y.U., Zhiyuan, L.I., Xiaoping, L.I.U., Zhiyuan, F.A.N.G., Yumei, L.I.U., Limei, Y.A.N.G., Mu, Z.H.U.A.N.G., Honghao, L.V. and Yangyong, Z.H.A.N. (2018). Heterotic group classification of 63 inbred lines and hybrid purity identification by using SSR markers in winter cabbage (Brassica Oleracea L. var. capitata). Horticultural Plant Journal, 4(4): 158-164. [DOI:10.1016/j.hpj.2018.03.010]
117. Xu, Y. (2010). Molecular Plant Breeding. Cabi Publishing. Wallingford, Oxfordshire, Cambridge, UK. [DOI:10.1079/9781845933920.0000]
118. Xu, Y. and Crouch, J.H. (2008). Marker-assisted selection in plant breeding: from publications to practice. Crop Science, 48(2): 391-407. [DOI:10.2135/cropsci2007.04.0191]
119. Yashitola, J., Thirumurugan, T., Sundaram, R.M., Naseerullah, M.K., Ramesha, M.S., Sarma, N.P. and Sonti, R.V. (2002). Assessment of purity of rice hybrids using microsatellite and STS markers. Crop Science, 42: 1369-1373. [DOI:10.2135/cropsci2002.1369]
120. Young, N.D. (1994). Constructing a Plant Genetic Linkage Map with DNA Markers. In: Ronald, L. and PhillipsIndra, K.V., Eds., DNA-Based Markers in Plants, pp. 31-47. Springer, Berlin, DE. [DOI:10.1007/978-94-011-1104-1_3]
121. Zarea, R., Mohammadi-Nejad, G. and Shahsavand-Hassani, H. (2013). Allelic variation of containing markers in responsible QTL for salinity tolerance (Saltol) at seedling stage in Iranian rice cultivars. Journal of Agricultural Biotechnology, 5: 1-14 (In Persian).
122. Zeinalabedini, M., Nakhoda, B., Majidian, P., Khosh Kholgh Sima, N.A. and Mortazavi, E. (2011). Biodiversity, genetic engineering and sustainable development. Journal of Biosafety, 4(1): 53-72.
ارسال پیام به نویسنده مسئول



XML   English Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

MirMohammadi Maibody S A M, Golkar P. Application of DNA Molecular Markers in Plant Breeding (Review article). pgr 2019; 6 (1) :1-30
URL: http://pgr.lu.ac.ir/article-1-141-fa.html

میرمحمدی میبدی سیدعلی‌محمد، گلکار پوراندحت. کاربرد نشانگرهای مولکولی DNA در به‌نژادی گیاهان. پژوهش های ژنتیک گیاهی. 1398; 6 (1) :1-30

URL: http://pgr.lu.ac.ir/article-1-141-fa.html



بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.
دوره 6، شماره 1 - ( 1398 ) برگشت به فهرست نسخه ها
پژوهش های ژنتیک گیاهی Plant Genetic Researches
Persian site map - English site map - Created in 0.07 seconds with 39 queries by YEKTAWEB 4657