[Home ] [Archive]   [ فارسی ]  
:: About :: Main :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..



 
..
:: Volume 6, Issue 2 (2020) ::
pgr 2020, 6(2): 79-96 Back to browse issues page
Evaluation of Genetic Variation and Parameters of Fatty Acid Profile in Doubled Haploid Lines of Camelina sativa L.
Farshad Fallah , Danial Kahrizi * , Abbas Rezaeizad , Alireza Zebarzadi , Lila Zarei
Department of Plant Production and Genetics, Faculty of Agricultural Science and Engineering, Razi University, Kermanshah, Iran , dkahrizi@razi.ac.ir
Abstract:   (16187 Views)
After cereals, oilseeds are the second-largest food reserves in the world. According to available statistics, more than 95 percent of Iran's oil needs are imported. Given the growing need for edible oils in Iran, it is important to identify fatty acids in the oilseed crops. Camelina sativa L. is an oil-medicinal plant and belongs to the Brassicaceae family that requires very little water and fertilizers. It is known as a low input plant. In this study, to analyze the fatty acid profile for breeding programs and specific industries, 137 doubled haploid camelina lines were evaluated in terms of fatty acid composition and variability of fatty acids trait, to estimate phenotypic coefficient of variation (PCV), genotypic coefficient of variation (GCV), heritability, and expected genetic advance. The determination of fatty acid by gas chromatography showed that 18 types of fatty acids were detectable in camelina seed oil. It is shown that the two fatty acids (C14:0 and C16:1) have the highest PCV and GCV. The highest heritability for C20:2, C20:3 and C20:0 fatty acids was estimated 98.92, 98.59 and 96.49 percent, respectively. In this study, two lines with linoleic acid of 35.81-36.67% and four lines with values ranged from 22.08-23.00% were introduced. The ratio of omega-6 to omega-3 (0.479-0.759) was obtained in the studied lines.
Keywords: Linoleic acid, Linolenic acid, Genetic variation, Oil seeds, Camelina sativa, Heritability
Full-Text [PDF 847 kb]   (4020 Downloads)    
Type of Study: Research | Subject: Molecular genetics
References
1. Abramovic, H. and Abram, V. (2005). Physico-chemical properties, composition and oxidative stability of Camelina sativa oil. Food Technology and Biotechnology, 43(1): 63-70.
2. Aghmioni, M., Aghaei, M.J., Vaezi, S.H. and Majidi Heravan, E. (2015). Evaluation of genetic diversity, heritability and genetic progress in Kabuli type Chickpea genotypes. Iranian Journal of Pulses Research, 6: 100-107 (In Persian).
3. Ambring, A., Johansson, M., Axelsen, M., Gan, L., Strandvik, B. and Friberg, P. (2006). Mediterranean-inspired diet lowers the ratio of serum phospholipid n-6 to n-3 fatty acids, the number of leukocytes and platelets, and vascular endothelial growth factor in healthy subjects. The American Journal of Clinical Nutrition, 83(3): 575-581. [DOI:10.1093/ajcn.83.3.575]
4. Balanuca, B., Stan, R., Hanganu, A., Lungu, A. and Iovu, H. (2015). Design of new camelina oil-based hydrophilic monomers for novel polymeric materials. Journal of the American Oil Chemists Society, 92(6): 881-891. [DOI:10.1007/s11746-015-2654-z]
5. Bansal, S. and Durrett, T.P. (2016). Camelina sativa: an ideal platform for the metabolic engineering and field production of industrial lipids. Biochimie, 120: 9-16. [DOI:10.1016/j.biochi.2015.06.009]
6. Belayneh, H.D., Wehling, R.L., Cahoon, E. and Ciftci, O.N. (2015). Extraction of omega-3-rich oil from Camelina sativa seed using supercritical carbon dioxide. The Journal of Supercritical Fluids, 104: 153-159. [DOI:10.1016/j.supflu.2015.06.002]
7. Büchsenschütz-Nothdurft, A., Schuster, A. and Friedt, W. (1998). Breeding for modified fatty acid composition via experimental mutagenesis in Camelina sativa (L.) Crtz. Industrial Crops and Products, 7(3): 291-295. [DOI:10.1016/S0926-6690(97)00060-5]
8. Crowley, J.G. and Fröhlich, A. (1998). Factors Affecting the Composition and Use of Camelina. Crops Research Centre, Oak Park, Carlow, IRL.
9. Crippa, I., Bermejo, C., Esposito, M.A., Martin, E.A., Cravero, V., Liberatti, D., Anido, F.S.L. and Cointry, E.L. (2009). Genetic variability, correlation and path analyses for agronomic traits in Lentil genotypes. International Journal of Plant Breeding, 3: 76-80.
10. Enjalbert, J.N., Zheng, S., Johnson, J.J., Mullen, J.L., Byrne, P.F. and McKay, J.K. (2013). Brassicaceae germplasm diversity for agronomic and seed quality traits under drought stress. Industrial Crops and Products, 47: 176-185. [DOI:10.1016/j.indcrop.2013.02.037]
11. FAO. (2015). Food and Agriculture Organization of the United Nations Statistics Division. FAO of the United Nations. http:// faostat3.fao.org.
12. Francis, A. and Warwick, S.I. (2009). The biology of canadian weeds. 142. Camelina alyssum (Mill.) Thell.; C. microcarpa Andrz. ex DC.; C. sativa (L.) Crantz. Canadian Journal of Plant Science, 89(4): 791-810. [DOI:10.4141/CJPS08185]
13. Gavzan, H., (2018). A review on health benefits of echium oil; as dietary vegetable source of essential fatty acids. Iran Journal Physiology Pharmacology, 2: 226-239 (In Persian).
14. Gomez-Monedero, B., Bimbela, F., Arauzo, J., Faria, J. and Ruiz, M.P. (2015). Pyrolysis of red eucalyptus, camelina straw, and wheat straw in an ablative reactor. Energy & Fuels, 29(3): 1766-1775. [DOI:10.1021/ef5026054]
15. Gugel, R.K. and Falk, K.C. (2006). Agronomic and seed quality evaluation of Camelina sativa in western Canada. Canadian Journal of Plant Science, 86(4): 1047-1058. [DOI:10.4141/P04-081]
16. Gunstone, F.D. (2004). Rapeseed and Canola Oil: Production, Processing, Properties and Uses. CRC Press, Boca Raton, Florida, USA.
17. Haslam, T.M. and Kunst, L. (2013). Extending the story of very-long-chain fatty acid elongation. Plant Science, 210: 93-107. [DOI:10.1016/j.plantsci.2013.05.008]
18. Hoseini, S., Najafi, G., Ghobadian, B., Yusaf, T. and Ebadi, M. (2018). The effects of Camelina "Soheil" as a novel biodiesel fuel on the performance and emission characteristics of diesel engine. Applied Sciences, 8(6): 1010. [DOI:10.3390/app8061010]
19. Hosseini, Y., Homaei, M., Karimian, N. and Saadat, S. (2014). Effect of salinity and boron on seed germination and emergence of canola (Brassica napus L.). Environmental Stresses in Crop Sciences, 7(1): 79-91.
20. Ibrahim, F.M. and El Habbasha, S.F. (2015). Chemical composition, medicinal impacts and cultivation of camelina (Camelina sativa). International Journal of Pharm Tech Research, 8: 114-122.
21. Imbrea, F., Jurcoane, S., Halmajan, H.V., Duda, M. and Botos, L. (2011). Camelina sativa: A new source of vegetal oils. Romanian Biotechnological Letters, 16(3): 6263-6270.
22. Ishida, M., Hara, M., Fukino, N., Kakizaki, T. and Morimitsu, Y. (2014). Glucosinolate metabolism, functionality and breeding for the improvement of Brassicaceae vegetables. Breeding Science, 64(1): 48-59. [DOI:10.1270/jsbbs.64.48]
23. Javidfar, F., Reipley, F., Zeinaly, H., Abdmishani, S., Shah Nejat Boushehri, A.A., Tavakol Afshari, R., Alizadeh, B. and Jafarieh, E. (2007). Heritability of fatty acids composition in spring oilseed rape (Brassica napus L.). Journal of Agriculture and Science, 17(3): 57-64 (In Persian).
24. Jiang, Y. and Caldwell, C.D. (2016). Effect of nitrogen fertilization on camelina seed yield, yield components, and downy mildew infection. Canadian Journal of Plant Science, 96(1): 17-26. [DOI:10.1139/cjps-2014-0348]
25. Jurcoane, S., Dobre, P., Florea, C., Petre, S.M. and Ropota, M. (2017). Camelina sativa a useful plant source for renewable jet fuels, human nutrition and animal feed. Proceeding Simpozion National, Piatra Neamt, Romania.
26. Kahrizi, D., Maniee, M., Mohammadi, R. and Cheghamirza, K. (2010). Estimation of genetic parameters related to morpho-agronomic traits of Durum Wheat (Triticum turgidum var. durum). Biharean Biologist, 4(2): 93-97.
27. Karimbeigi, H., Nazarian-Firouzabadi, F., Khademi, M. ad Mousavi, E. (2016). Assessment of genetic diversity among some oilseed Rape (Brassica nupus L.) plants, using single sequence repeats (SSR) molecular markers. Plant Genetic Researches, 3(1): 45-56 (In Persian). [DOI:10.29252/pgr.3.1.45]
28. Katar, D. (2013). Determination of fatty acid composition on different false flax (Camelina sativa (L.) Crantz) Genotypes under Ankara ecological conditions. Turkish Journal of Field Crops, 18(1): 66-72.
29. Kim, J.H., Kim, Y., Kim, Y.J. and Park, Y. (2016). Conjugated linoleic acid: potential health benefits as a functional food ingredient. Annual Review of Food Science and Technology, 7: 221-244. [DOI:10.1146/annurev-food-041715-033028]
30. McVay, K.A. (2008). Camelina production in Montana. MSU extension. Medicine Present Perspective, 3: 33-42.
31. Moser, B.R. and Vaughn, S.F. (2010). Evaluation of alkyl esters from Camelina sativa oil as biodiesel and as blend components in ultra-low-sulfur diesel fuel. Bioresource Technology, 101(2): 646-653. [DOI:10.1016/j.biortech.2009.08.054]
32. Moser, B.R. (2016). Fuel property enhancement of biodiesel fuels from common and alternative feed stocks via complementary blending. Renewable Energy, 85: 819-825. [DOI:10.1016/j.renene.2015.07.040]
33. Murray, R.K., Granner, D.K. and Rodwell, V.W. (2006) Harper's Illustrated Biochemistry. McGraw-Hill Companies Press, New York, USA.
34. Ranjzad, M., Kkhayami, M. and Asadi, A.E. (2009). Measuring and investigation of omega 3 and 6 fatty acids in species of linum ssp. Journal of Medicinal Plants, 8(2): 25-32 (In Persian).
35. Raziei, Z., Kahrizi, D. and Rostami, A.H. (2018). Effects of climate on fatty acid profile in Camelina sativa. Cellular and Molecular Biology, 64(5): 91-96. [DOI:10.14715/cmb/2018.64.5.15]
36. Shukla, V.K.S., Dutta, P.C. and Artz, W.E. (2002). Camelina oil and its unusual cholesterol content. Journal of the American Oil Chemists' Society, 79(10): 965-969. [DOI:10.1007/s11746-002-0588-1]
37. Singh, T.P., Raiger, H.L., Kumari Singh, J. and Deshmukh, P.S. (2014). Evaluation of Chickpea genotypes for variability in seed protein content and yield components under restricted soil moisture condition. Indian Journal of Plant Physiology, 19: 273-280. [DOI:10.1007/s40502-014-0109-4]
38. Simopoulos, A.P. and Meester, F. (2009). A balanced omega-6/omega-3 fatty acid ratio, cholesterol and coronary heart disease. Karger Medical and Scientific Publishers, Basel, SW. [DOI:10.1159/isbn.978-3-8055-9225-3]
39. Simopoulos, A.P. (2002). Omega-3 fatty acids in inflammation and autoimmune diseases. Journal of the American College of Nutrition, 21(6): 495-505. [DOI:10.1080/07315724.2002.10719248]
40. Toncea, I., Necseriu, D., Prisecaru, T., Balint, L.N., Ghilvacs, M.I. and Popa, M. (2013). The seed's and oil composition of camelina first Romanian cultivar of camelina (Camelina sativa, L. Crantz). Romanian Biotechnological Letters, 18(5): 8594-8602.
41. USDA. (2015). National Agricultural Statistics Service, USDA. http://www.nass.usda.gov/ (accessed Dec. 2015).
42. Watts, J.L. (2016). Using Caenorhabditis elegans to uncover conserved functions of omega-3 and omega-6 fatty acids. Journal of Clinical Medicine, 5(2): 19. [DOI:10.3390/jcm5020019]
43. Yang, J., Caldwell, C., Corscadden, K., He, Q.S. and Li, J. (2016). An evaluation of biodiesel production from Camelina sativa grown in Nova Scotia. Industrial Crops and Products, 81: 162-168. [DOI:10.1016/j.indcrop.2015.11.073]
44. Zubr, J. (2003). Dietary fatty acids and amino acids of Camelina sativa seed. Journal of Food Quality, 26(6): 451-462. [DOI:10.1111/j.1745-4557.2003.tb00260.x]
Send email to the article author



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Fallah F, Kahrizi D, Rezaeizad A, Zebarzadi A, Zarei L. Evaluation of Genetic Variation and Parameters of Fatty Acid Profile in Doubled Haploid Lines of Camelina sativa L.. pgr 2020; 6 (2) :79-96
URL: http://pgr.lu.ac.ir/article-1-148-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 6, Issue 2 (2020) Back to browse issues page
پژوهش های ژنتیک گیاهی Plant Genetic Researches
Persian site map - English site map - Created in 0.07 seconds with 38 queries by YEKTAWEB 4657