عناصر تنظیمی بالادست، ژنهای هدف بالقوه و الگوی بیان سه miRNA پاسخدهنده به تنش خشکی در دو رقم انگور
|
اعظم مؤیدی نژاد ، بهروز محمد پرست* ، قاسم حسینی سالکده ، احسان محسنی فرد ، محمد علی نجاتیان |
پژوهشکده انگور و کشمش، دانشگاه ملایر، ملایر ، bmparast2013@gmail.com |
|
چکیده: (11923 مشاهده) |
میکروRNAها (miRNAs) بهعنوان گروهی از RNAهای کوچک غیرکدکننده نقش مهمی در تنظیم رشد، نمو و پاسخ گیاهان به تنشهای مختلف ایفا میکنند. در این تحقیق بیان سه miRNA پاسخدهنده به خشکی (miR160 ، miR159 و (miR169 با استفاده ازqRT-PCR در دو رقم انگور متحمل (یاقوتی) و حساس به خشکی (بیدانهسفید) تحت شرایط تنش خشکی مورد مقایسه قرار گرفت. بهمنظور شناسایی عناصر تنظیمی بالقوه در پروموتر miRNAهای مورد بررسی، توالی بالادست پیش ساز این miRNAها توسط پایگاه دادهای PlantCARE مورد آنالیز قرار گرفت. موتیفهای مرتبط با خشکی مانند ABREها و MBSها در مناطق تنظیمی miRNAها شناسایی شدند. سه فاکتور رونویسی مرتبط با سیگنالینگ هورمونهای گیاهی اسید آبسیزیک (ABA) و اکسین بهعنوان مهمترین ژنهای هدفmiRNA های مورد بررسی، شناسایی شدند. الگوی بیان miRNAهای مورد بررسی بسته به نوعmiRNA و نوع رقم، متفاوت بود، بهطوریکه بیان miRNA159 تحت تأثیر تنش در رقم بیدانهسفید بدون تغییر بود و در رقم یاقوتی افزایش یافت اما بیان miRNA160 وmiRNA169 در دو رقم مورد بررسی بهصورت معکوس تغییر یافت. پروفایل بیان وابسته به ژنوتیپ (رقم) نشان داد که پاسخ miRNA ها به تنش خشکی در میان ژنوتیپهای خیلی نزدیک با حساسیت متفاوت به تنش نیز متفاوت است. بهطورکلی با توجه به نقش ژنهای هدف بالقوه miRNA های مورد بررسی، بهنظر میرسد که تغییر بیان miRNAهای ارزیابیشده درنهایت به تحمل بهتر تنش خشکی در رقم یاقوتی منجر میشود.
|
|
واژههای کلیدی: بیدانهسفید، خشکی، ژن هدف، عناصر تنظیمی، یاقوتی |
|
متن کامل [PDF 683 kb]
(2855 دریافت)
|
نوع مطالعه: پژوهشي |
موضوع مقاله:
ژنتیک مولکولی
|
|
|
|
|
فهرست منابع |
1. Adai, A., Johnson, C., Mlotshwa, S., Archer-Evans, S., Manocha, V., Vance, V. and Sundaresan, V. (2005). Computational prediction of miRNAs in Arabidopsis thaliana. Genome Research, 15(1): 78-91. [ DOI:10.1101/gr.2908205] 2. Alonso-Peral, M.M., Li, J., Li, Y., Allen, R.S., Schnippenkoetter, W., Ohms, S., White, R.G. and Millar, A.A. (2010). The microRNA159-regulated GAMYB-like genes inhibit growth and promote programmed cell death in Arabidopsis. Plant Physiology, 154: 757-771. [ DOI:10.1104/pp.110.160630] 3. Aravind, J., Rinku, S., Pooja, B., Shikha, M., Kaliyugam, S., Mallikarjuna, M.G. and Nepolean, T. (2017). Identification, characterization, and functional validation of drought-responsive microRNAs in subtropical maize inbreds. Frontiers in Plant Science, 8: 941. [ DOI:10.3389/fpls.2017.00941] 4. Bakhshi, B., Fard, E.M., Gharechahi, J., Safarzadeh, M., Nikpay, N., Fotovat, R. and Salekdeh, G.H. (2017). The contrasting microRNA content of a drought tolerant and a drought susceptible wheat cultivar. Journal of Plant Physiology, 216: 35-43. [ DOI:10.1016/j.jplph.2017.05.012] 5. Barrera-Figueroa, B.E., Gao, L., Diop, N.N., Wu, Z., Ehlers, J.D., Roberts, P.A. and Liu, R. (2011). Identification and comparative analysis of drought-associated microRNAs in two cowpea genotypes. BMC Plant Biology, 11(1): 127. [ DOI:10.1186/1471-2229-11-127] 6. Carrington, J.C. and Ambros, V. (2003). Role of microRNAs in plant and animal development. Science, 301(5631): 336-338. [ DOI:10.1126/science.1085242] 7. Chen, C., Ridzon, D.A., Broomer, A.J., Zhou, Z., Lee, D.H., Nguyen, J.T. and Lao, K.Q. (2005a). Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Research, 33(20): e179-e179. [ DOI:10.1093/nar/gni178] 8. Chen, R., Ni, Z., Nie, X., Qin, Y., Dong, G. and Sun, Q. (2005b). Isolation and characterization of genes encoding Myb transcription factor in wheat (Triticum aestivem L.). Plant Science, 169(6): 1146-1154. [ DOI:10.1016/j.plantsci.2005.07.018] 9. Covarrubias, A.A. and Reyes, J.L. (2010). Post‐transcriptional gene regulation of salinity and drought responses by plant microRNAs. Plant, Cell and Environment, 33(4): 481-489. [ DOI:10.1111/j.1365-3040.2009.02048.x] 10. De Jong, M., Mariani, C. and Vriezen, W.H. (2009). The role of auxin and gibberellin in tomato fruit set. Journal of Experimental Botany, 60(5): 1523-1532. [ DOI:10.1093/jxb/erp094] 11. Ding, Y., Tao, Y. and Zhu, C. (2013). Emerging roles of microRNAs in the mediation of drought stress response in plants. Journal of Experimental Botany, 64(11): 3077-3086. [ DOI:10.1093/jxb/ert164] 12. Eldem, V., Akcay, U.C., Ozhuner, E., Bakır, Y., Uranbey, S. and Unver, T. (2012). Genome-wide identification of miRNAs responsive to drought in peach (Prunus persica) by high-throughput deep sequencing. PloS One, 7(12): e50298. [ DOI:10.1371/journal.pone.0050298] 13. Ferdous, J., Hussain, S.S. and Shi, B.J. (2015). Role of micro RNA s in plant drought tolerance. Plant Biotechnology Journal, 13(3): 293-305. [ DOI:10.1111/pbi.12318] 14. Guilfoyle, T.J. and Hagen, G. (2007). Auxin response factors. Current Opinion in Plant Biology, 10(5): 453-460. [ DOI:10.1016/j.pbi.2007.08.014] 15. Hosseini, S.Z., Ismaili, A. and Sohrabi, S.S. (2018). Evaluation of drought tolerance in safflower (Carthamus tinctorius L.) under water deficit stress conditions. Plant Genetic Researches, 5(2): 55-72 (In Persian). [ DOI:10.29252/pgr.5.2.55] 16. Ibraheem, O., Botha, C.E. and Bradley, G. (2010). In silico analysis of cis-acting regulatory elements in 5′ regulatory regions of sucrose transporter gene families in rice (Oryza sativa Japonica) and Arabidopsis thaliana. Computational Biology and Chemistry, 34(5-6): 268-283. [ DOI:10.1016/j.compbiolchem.2010.09.003] 17. Jones-Rhoades, M.W. and Bartel, D.P. (2004). Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Molecular Cell, 14(6): 787-799. [ DOI:10.1016/j.molcel.2004.05.027] 18. Jones-Rhoades, M.W., Bartel, D.P. and Bartel, B. (2006). MicroRNAs and their regulatory roles in plants. Annual Review of Plant Biology, 57: 19-53. [ DOI:10.1146/annurev.arplant.57.032905.105218] 19. Khraiwesh, B., Zhu, J.K. and Zhu, J. (2012). Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms, 1819(2): 137-148. [ DOI:10.1016/j.bbagrm.2011.05.001] 20. Kulcheski, F.R., de Oliveira, L.F., Molina, L.G., Almerão, M.P., Rodrigues, F.A., Marcolino, J. and Abdelnoor, R.V. (2011). Identification of novel soybean microRNAs involved in abiotic and biotic stresses. BMC Genomics, 12(1): 307. [ DOI:10.1186/1471-2164-12-307] 21. Kumar, R. (2014). Role of microRNAs in biotic and abiotic stress responses in crop plants. Applied Biochemistry and Biotechnology, 174(1): 93-115. [ DOI:10.1007/s12010-014-0914-2] 22. Lescot, M., Déhais, P., Thijs, G., Marchal, K., Moreau, Y., Van de Peer, Y., Rouzé, P. and Rombauts, S. (2002). PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Research, 30(1): 325-327. [ DOI:10.1093/nar/30.1.325] 23. Li, W.X., Oono, Y., Zhu, J., He, X.J., Wu, J.M., Iida, K. and Zhu, J.K. (2008). The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and post transcriptionally to promote drought resistance. The Plant Cell, 20(8): 2238-2251. [ DOI:10.1105/tpc.108.059444] 24. Lim, P.O., Lee, I.C., Kim, J., Kim, H.J., Ryu, J.S., Woo, H.R. and Nam, H.G. (2010). Auxin response factor 2 (ARF2) plays a major role in regulating auxin-mediated leaf longevity. Journal of Experimental Botany, 61(5): 1419-1430. [ DOI:10.1093/jxb/erq010] 25. Lu, C., Kulkarni, K., Souret, F.F., Muthu Valliappan, R., Tej, S.S., Poethig, R.S. and Meyers, B.C. (2006). MicroRNAs and other small RNAs enriched in the Arabidopsis RNA-dependent RNA polymerase-2 mutant. Genome Research, 16(10): 1276-1288. [ DOI:10.1101/gr.5530106] 26. Luo, M., Gao, Z., Li, H., Li, Q., Zhang, C., Xu, W., Song, S., Ma, C. and Wang, S. (2018). Selection of reference genes for miRNA qRT-PCR under abiotic stress in grapevine. Scientific Reports, 8(1): 4444. [ DOI:10.1038/s41598-018-22743-6] 27. Marin, E., Jouannet, V., Herz, A., Lokerse, A.S., Weijers, D., Vaucheret, H., Nussaume, L., Crespi, M.D. and Maizel, A. (2010). miR390, Arabidopsis TAS3 tasiRNAs, and their auxin response factor targets define an autoregulatory network quantitatively regulating lateral root growth. The Plant Cell, 22(4): 1104-1117. [ DOI:10.1105/tpc.109.072553] 28. OIV. (2019). The International Organization of Vine and Wine. Statistical report on world VitViniculture. http://www.oiv.int/public/medias/6782/oiv-2019-statistical-report-on-world-vitivini culture.pdf. Accessed July 13, 2019. 29. Pagliarani, C., Vitali, M., Ferrero, M., Vitulo, N., Incarbone, M., Lovisolo, C. and Schubert, A. (2017). Accumulation of MicroRNAs differentially modulated by drought is affected by grafting in grapevine. Plant Physiology, 173: 2180-2195. [ DOI:10.1104/pp.16.01119] 30. Pantaleo, V., Szittya, G., Moxon, S., Miozzi, L., Moulton, V., Dalmay, T. and Burgyan, J. (2010). Identification of grapevine microRNAs and their targets using high‐throughput sequencing and degradome analysis. The Plant Journal, 62(6): 960-976. [ DOI:10.1111/j.0960-7412.2010.04208.x] 31. Qiu, P. (2003). Computational approaches for deciphering the transcriptional regulatory network by promoter analysis. Biosilico, 1(4): 125-133. [ DOI:10.1016/S1478-5382(03)02341-2] 32. Ren, Y., Chen, L., Zhang, Y., Kang, X., Zhang, Z. and Wang, Y. (2012). Identification of novel and conserved Populus tomentosa microRNA as components of a response to water stress. Functional & Integrative Genomics, 12(2): 327-339. [ DOI:10.1007/s10142-012-0271-6] 33. Reyes, J.L. and Chua, N.H. (2007). ABA induction of miR159 controls transcript levels of two MYB factors during Arabidopsis seed germination. The Plant Journal, 49(4): 592-606. [ DOI:10.1111/j.1365-313X.2006.02980.x] 34. Sagar, M., Chervin, C., Mila, I., Hao, Y., Roustan, J.P., Benichou, M. and Pech, J.C. (2013). Sl-ARF4, an auxin response factor involved in the control of sugar metabolism during tomato fruit development. Plant Physiology, 161: 1362-1374. [ DOI:10.1104/pp.113.213843] 35. Schmittgen, T.D., Lee, E.J., Jiang, J., Sarkar, A., Yang, L., Elton, T.S. and Chen, C. (2008). Real-time PCR quantification of precursor and mature microRNA. Methods, 44(1): 31-38. [ DOI:10.1016/j.ymeth.2007.09.006] 36. Shinozaki, K. and Yamaguchi-Shinozaki, K. (2007). Gene networks involved in drought stress response and tolerance. Journal of Experimental Botany, 58(2): 221-227. [ DOI:10.1093/jxb/erl164] 37. Shuai, P., Liang, D., Zhang, Z., Yin, W. and Xia, X. (2013). Identification of drought-responsive and novel Populus trichocarpa microRNAs by high-throughput sequencing and their targets using degradome analysis. Bmc Genomics, 14(1): 233. [ DOI:10.1186/1471-2164-14-233] 38. Solovyev, V.V., Shahmuradov, I.A. and Salamov, A.A. (2010). Identification of Promoter Regions and Regulatory Sites. In: Ladunga, I., Ed., Computational Biology of Transcription Factor Binding, pp. 57-83. Humana Press, Lincoln, USA. [ DOI:10.1007/978-1-60761-854-6_5] 39. Sunkar, R., Li, Y.F. and Jagadeeswaran, G. (2012). Functions of microRNAs in plant stress responses. Trends in Plant Science, 17(4): 196-203. [ DOI:10.1016/j.tplants.2012.01.010] 40. Varkonyi-Gasic, E., Wu, R., Wood, M., Walton, E.F. and Hellens, R.P. (2007). Protocol: a highly sensitive RT-PCR method for detection and quantification of microRNAs. Plant Methods, 3(1): 12. [ DOI:10.1186/1746-4811-3-12] 41. Wang, C., Han, J., Liu, C., Kibet, K.N., Kayesh, E., Shangguan, L. and Fang, J. (2012). Identification of microRNAs from amur grape (Vitis amurensis Rupr.) by deep sequencing and analysis of microRNA variations with bioinformatics. BMC Genomics, 13(1): 122. [ DOI:10.1186/1471-2164-13-122] 42. Wang, C., Wang, X., Kibet, N.K., Song, C., Zhang, C., Li, X. and Fang, J. (2011). Deep sequencing of grapevine flower and berry short RNA library for discovery of novel microRNAs and validation of precise sequences of grapevine microRNAs deposited in miRBase. Physiologia Plantarum, 143(1): 64-81. [ DOI:10.1111/j.1399-3054.2011.01481.x] 43. Wang, J.W., Wang, L.J., Mao, Y.B., Cai, W.J., Xue, H.W. and Chen, X.Y. (2005). Control of root cap formation by microRNA-targeted auxin response factors in Arabidopsis. The Plant Cell, 17(8): 2204-2216. [ DOI:10.1105/tpc.105.033076] 44. Wilmoth, J.C., Wang, S., Tiwari, S.B., Joshi, A.D., Hagen, G., Guilfoyle, T.J. and Reed, J.W. (2005). NPH4/ARF7 and ARF19 promote leaf expansion and auxin‐induced lateral root formation. The Plant Journal, 43(1): 118-130. [ DOI:10.1111/j.1365-313X.2005.02432.x] 45. Zheng, J., Fu, J., Gou, M., Huai, J., Liu, Y., Jian, M., Huang, Q., Guo, X., Dong, Z., Wang, H. and Wang, G. (2010). Genome-wide transcriptome analysis of two maize inbred lines under drought stress. Plant Molecular Biology, 72(4-5): 407-421. [ DOI:10.1007/s11103-009-9579-6]
|
|
ارسال پیام به نویسنده مسئول |
|
|
Moayedinezhad A, Mohammadparast B, Hosseini Salekdeh G, Mohsenifard E, Nejatian M A. Upstream Regulatory Elements, Potential Targets and Expression Patterns of Three Drought Responsive miRNAs in Two Grapevine Cultivars. pgr 2019; 6 (1) :115-126 URL: http://pgr.lu.ac.ir/article-1-152-fa.html
مؤیدی نژاد اعظم، محمد پرست بهروز، حسینی سالکده قاسم، محسنی فرد احسان، نجاتیان محمد علی. عناصر تنظیمی بالادست، ژنهای هدف بالقوه و الگوی بیان سه miRNA پاسخدهنده به تنش خشکی در دو رقم انگور. پژوهش های ژنتیک گیاهی. 1398; 6 (1) :115-126 URL: http://pgr.lu.ac.ir/article-1-152-fa.html
|