1. Aliakbari, M., Shamloo-Dashtpagerdi, R. and Ebrahimie, A. (2013). Bioinformatic analysis of saffron (Crocus sativus L.) stigma est sequences to determining functional genome orientation and gene network. Journal of Saffron Agronomy and Technology, (1)1: 40-45 (In Persian). 2. Bayati Zadeh, J., Moradi Kor, Z. and Karimi Goftar, M. (2013). Licorice (Glycyrrhiza glabra Linn) as a valuable medicinal plant. International Journal of Advanced Biological and Biomedical Research, 1(10): 1281-1288 (In Persian). 3. D'antuono, L.F., Moretti, A. and Lovato, A.F. (2002). Seed yield, yield components, oil content and essential oil content and composition of Nigella sativa l. and Nigella damascene l. Industrial Crops and Products, 15(1): 59-69. [ DOI:10.1016/S0926-6690(01)00096-6] 4. Fukai, T., Sheng, C.B., Horikoshi, T. and Nomura, T. (1996). Isoprenylated flavonoids from underground parts of Glycyrrhiza glabra. Phytochemistry, 43(5): 1119-1124. [ DOI:10.1016/S0031-9422(96)00391-3] 5. Hossein Panahi, Z.H., Maroufi, A. and Bahramnejad, B. (2016). Isolation and expression pattern of β-amyrin synthase in chicory (Cichorium intybus L.). Genetics Novin Journal, 3(11): 399-409 (In Persian). 6. Hosseinzadeh, H. and Nassiri‐Asl, M. (2015). Pharmacological effects of Glycyrrhiza Spp. and its bioactive constituents: update and review. Phytotherapy Research, 29(12): 1868-1886 (In Persian). [ DOI:10.1002/ptr.5487] 7. Kim, D.W., Kim, R.N., Choi, S.H., Kim, D.W., Nam, S.H., Choi, H.S. and Kang, A. (2011). EST analysis predicts putatively causative genes underlying the pharmaceutical application of Glycyrrhiza uralensis fisch. Plant Molecular Biology Reporter, 29(4): 814-824. [ DOI:10.1007/s11105-011-0290-9] 8. Li, Y., Luo, H.M., Sun, C., Song, J.Y., Sun, Y.Z., Wu, Q. and Chen, S.L. (2010). EST analysis reveals putative genes involved in glycyrrhizin biosynthesis. Bmc Genomics, 11(1): 268. [ DOI:10.1186/1471-2164-11-268] 9. Liu, Y., and Liu, C.S. (2012). Study on the spatial and temporal expression of β-AS gene of Glycyrrhiza uralensis. Chin Mater Med, 35(4): 528-531. 10. Miranda, M., Vega-Gálvez, A., Quispefuentes, I., Rodríguez, M.J., Maureira, H. and Martínez, E.A. (2012). Nutritional aspects of six quinoa (Chenopodium quinoa Willd.) Ecotypes from three geographical areas of Chile. Chilean Journal of Agricultural Research, 72(2):175-181. [ DOI:10.4067/S0718-58392012000200002] 11. Mochida, K., Sakurai, T., Seki, H., Yoshida, T., Takahagi, K., Sawai, S., and Saito, K. (2017). Draft genome assembly and annotation of Glycyrrhiza uralensis, a medicinal legume. The Plant Journal, 89(2): 181-194. [ DOI:10.1111/tpj.13385] 12. Nasrollahi, V., Mirzaie-Asl, A., Piri, K., Nazeri, S. and Mehrabi, R. (2014). The effect of drought stress on the expression of key genes involved in the biosynthesis of triterpenoid saponins in liquorice (Glycyrrhiza glabra). Phytochemistry, 103: 32-37. [ DOI:10.1016/j.phytochem.2014.03.004] 13. Ogata, Y. and Suzuki, H. (2011). Plant expressed sequence tags databases: practical uses and the improvement of their searches using network module analysis. Plant Biotechnology, 28(4): 351-360. [ DOI:10.5511/plantbiotechnology.11.0818a] 14. Pandey, D.K. and Ayangla, N.W. (2017). Biotechnological aspects of the production of natural sweetener glycyrrhizin from Glycyrrhiza sp. Phytochemistry Reviews, 17: 1-34. [ DOI:10.1007/s11101-017-9540-2] 15. Rebhun, J.F., Glynn, K.M. and Missler, S.R. (2015). Identification of Glabridin as a bioactive compound in licorice (Glycyrrhiza glabra L.) extract that activates human peroxisome proliferator-activated receptor gamma (Pparγ). Fitoterapia, 106: 55-61. [ DOI:10.1016/j.fitote.2015.08.004] 16. Schmittgen, T.D. and Livak, K.J. (2008). Analyzing Real-time PCR data by the comparative ct method. Nature Protocols, 3(6): 1101-1108. [ DOI:10.1038/nprot.2008.73] 17. Seki, H., Ohyama, K., Sawai, S., Mizutani, M., Ohnishi, T., Sudo, H. and Muranaka, T. (2008). Licorice β-amyrin 11-oxidase, a cytochrome p450 with a key role in the biosynthesis of the triterpene sweetener glycyrrhizin. Proceedings of the National Academy of Sciences, 105(37): 14204-14209. [ DOI:10.1073/pnas.0803876105] 18. Seki, H., Tamura, K. and Muranaka, T. (2015). P450s and UGTs: key players in the structural diversity of triterpenoid saponins. Plant and Cell Physiology, 56(8): 1463-1471. [ DOI:10.1093/pcp/pcv062] 19. Shirazi, Z., Aalami, A., Tohidfar, M. and Sohani, M. (2017). Cloning, bioinformatics study and gene expression evaluation of squalene synthase 1 in Iranian native licorice. Genetic Engineering and Biosafety Journal, 1(6): 37-48 (In Persian). 20. Somjen, D., Knoll, E. and Vaya, J. (2004). Estrogen-like activity of licorice root constituents: glabridin and glabrene, in vascular tissues in vitro and in vivo. Journal of Steroid Biochemical Molecular Biology. 91: 147-155. [ DOI:10.1016/j.jsbmb.2004.04.003] 21. Tang, Z.H., Li, T., Tong, Y.G., Chen, X.J., Chen, X.P., Wang, Y.T. and Lu, J.J. (2015). A systematic review of the anticancer properties of compounds isolated from licorice (gancao). Planta Medica, 81(18): 1670-1687. [ DOI:10.1055/s-0035-1558227] 22. Wink, M. (2010). Introduction: biochemistry, physiology and ecological functions of secondary metabolites. Annual Plant Reviews, 40: 1-19. [ DOI:10.1002/9781444320503.ch1] 23. Zarabi, M., Fardoe, R. and Maleki-Tabrizi, N. (2013). Principle of Bioinformatics. Ayiizh Publisher, Tehran, IR (In Persian). 24. Zhao, H., Tang, Q., Mo, C., Bai, L., Tu, D. and Ma, X. (2017). Cloning and characterization of squalene synthase and cycloartenol synthase from Siraitia grosvenorii. Acta Pharmaceutica Sinica B, 7(2): 215-222. [ DOI:10.1016/j.apsb.2016.06.012]
|