[Home ] [Archive]   [ فارسی ]  
:: About :: Main :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..



 
..
:: Volume 9, Issue 1 (2022) ::
pgr 2022, 9(1): 1-12 Back to browse issues page
The Effect of Chalcone Isomerase (Chi) Gene Silencing on Flavonoids Content in Petunia hybrida using RNAi Technology
Fatemeh Keykha Akhar * , Abdolreza Bagheri , Nasrin Moshtaghi , Masoud Fakhrfeshani
Department of Plant Genetic and Production, Faculty of Agriculture, Jahrom University, Jahrom, Iran , f.keykha@jahromu.ac.ir
Abstract:   (2214 Views)
have been bred with altered flower color using genetic engineering approaches. One of the most effective applications is the reduction of flower pigments by suppression of involved enzymes in their biosynthesis pathways. RNA interference (RNAi) has provided an effective tool for the knock down of genes involved in the production of flower pigments. In this study, a chi-RNAi construct was designed for chalcone isomerase (chi) gene to transform Petunia plants. Transgenic lines in one phenotype showed 5.6 fold reduction in chi expression in comparison to the control. Chalcone and naringenin were also extracted and quantified. A 24% reduction in naringenin content was obvious in all transgenic lines. Generally, the results of this research showed that RNAi technology can be used as an efficient method for silencing the flower pigments in petunia. In addition, the chalcone isomerase gene was identified as one of the effective genes in anthocyanin biosynthesis pathway in Petunia plants which is involved in the production of color in these plants; hence, chi gene silencing resulted in clear phenotypic alterations in this plant.
Keywords: Anthocyanin, Petunia hybrida, Chalcone isomerase, Gene silencing, RNAi
Full-Text [PDF 561 kb]   (582 Downloads)    
Type of Study: Research | Subject: Genetic engineering
Accepted: 2022/09/11
References
1. Ahloowalia, B.S. and Maluszynski, M. (2001). Induced mutations - a new paradigm in plant breeding. Euphytica, 118: 167-173. [DOI:10.1023/A:1004162323428]
2. Ahn, C.H., Ramya, M., An, H.R., Park, P.M., Kim, Y.J., Lee, S.Y. and Jang, S. (2020). Progress and challenges in the improvement of ornamental plants by genome editing. Plants, 9: 687-691. [DOI:10.3390/plants9060687]
3. Anderson, O. and Jordheim, M. (2006). The Anthocyanins in Flavonoids Chemistry, Biochemistry and Application. CRC Press Boca, Raton, FL, USA.
4. Bhattarai, K. and Van Huylenbroeck, J. (2022). Breeding, genetics, and genomics of ornamental plants. Horticulturae, 8: 148-156. [DOI:10.3390/horticulturae8020148]
5. Chen, G., Liu, H., Wei, Q., Zhao, H., Liu, J. and Yu, Y. (2017). The acyl-activating enzyme PhAAE13 is an alternative enzymatic source of precursors for anthocyanin biosynthesis in petunia flowers. Journal of Experimental Botany, 68: 457-467. [DOI:10.1093/jxb/erw426]
6. Datta, S.K. (2020). Induced mutations: technological advancement for development of new ornamental varieties. The Nucleus, 63: 119-129. [DOI:10.1007/s13237-020-00310-7]
7. Delgado-Vargas, F., Jimenez, A.R. and Paredae-Lopez, O. (2000). Natural pigments: carotenoids, anthocyanins, and betalains: characteristics, biosynthesis, processing, and stability. Critical Reviews in Food Science and Nutrition, 40: 173-289. [DOI:10.1080/10408690091189257]
8. Dixon, R.A. (2005). Engineering of plant natural product pathways. Current Opinion of Plant Biology, 8: 329-336. [DOI:10.1016/j.pbi.2005.03.008]
9. Fujino, N., Tenma, N., Waki, T., Ito, K., Komatsuzaki, Y. and Sugiyama, K. (2018). Physical interactions among flavonoid enzymes in snapdragon and torenia reveal the diversity in the flavonoid metabolon organization of different plant species. The Plant Journal, 94: 372-392. [DOI:10.1111/tpj.13864]
10. Fukusaki, E., Kawasaki, K., Kajayama, S., An, C., SuZuki, K., Tanaka, Y. and Kobayashi, A. (2004). Flower color modulations of Torenia hybrida by down regulation of chalcone synthase gene with RNA interference. Journal of Biotechnology, 111: 229-240. [DOI:10.1016/j.jbiotec.2004.02.019]
11. Hajiahmadi, Z., Shirzadian-Khorramabad, R., Kazemzad, M. and Sohani, M.M. (2018). Expression of cryIAb driven by a wound inducible promoter (MPI) in tomato to enhance resistance to Tuta absoluta. Plant Genetic Researches, 4(2): 1-16 (In Persian). [DOI:10.29252/pgr.4.2.1]
12. Heilersig, H.J.B., Loonen, A.E.H.M., Bergervoet, M., Wolters, A.M.A. and Visser, R.G.F. (2006). Post-transcriptional gene silencing of GBSSI in potato: effects of size and sequence of the inverted repeats. Plant Molecular Biology, 60: 647-662. [DOI:10.1007/s11103-005-5280-6]
13. Khan, Z., Razzaq, A., Sattar, T., Ahmed, A., Khan, S.H., and Ghouri, M.Z. (2022). Understanding floral biology for CRISPR-based modification of color and fragrance in horticultural plants. F1000Research, 11(854): 854. [DOI:10.12688/f1000research.122453.1]
14. Keykha, F., Bagheri, A. and Moshtaghi, N. (2016a). Analysis of chalcone synthase and chalcone isomerase gene expression in pigment production pathway at different flower colors of Petunia Hybrida. Journal of Cell and Molecular Research, 8: 8-14.
15. Keykha, F., Bagheri, A., Moshtaghi, N., Bahrami, A.R. and Sharifi, A. (2016b). RNAi-induced silencing in floral tissues of Petunia hybrida by agroinfiltration: a rapid assay for chalcone isomerase gene function analysis. Cellular and Molecular Biology, 62: 26-31.
16. Lin, J.J. (1995). Electro transformation of Agrobacterium. In: Nickoloff, J.A., (ed.). Methods in Molecular Biology, pp. 177-178, Humana Press, Totowa, NJ, USA.
17. Nakamura, N., Fukuchi-Mizutani, M., Miyazaki, K., Suzuki, K. and Tanaka, Y. (2006). RNAi suppression of the anthocyanidin synthase gene in Torenia hybrida yields white flowers with high frequency and better stability than antisense and sense suppression. Plant Biotechnology, 23: 13-17. [DOI:10.5511/plantbiotechnology.23.13]
18. Nakatsuka, T., Mishiba, K., Abe, Y., Kubota, A., Kakizaki, Y., Yamamura, S. and Nishihara, M. (2008). Flower color modification of gentian plants by RNAi-mediated gene silencing. Plant Biotechnology, 25: 61-68. [DOI:10.5511/plantbiotechnology.25.61]
19. Nakatsuka, T., Mishiba, K.I., Kubota, A., Abe, Y., Yamamura, S., Nakamura, N., Tanaka, Y. and Nishihara, M. (2010). Genetic engineering of novel flower color by suppression of anthocyanin modification genes in gentian. Journal of Plant Physiology, 167: 231-237. [DOI:10.1016/j.jplph.2009.08.007]
20. Nayeri, S. and Baghban Kohnehrouz, B. (2022). Efficient agrobacterium-mediated transformation and analysis of transgenic plants in hybrid black poplar (Populus × euromericana Dode Guinier). Plant Genetic Researches, 8(2): 1-22 (In Persian). [DOI:10.52547/pgr.8.2.1]
21. Nishihara, M., Nakatsuka, T. and Yamamura, S. (2005). Flavonoid components and flower color change in transgenic tobacco plants by suppression of chalcone isomerase gene. FEBS Letters, 579: 6047-6078. [DOI:10.1016/j.febslet.2005.09.073]
22. Nishihara, M. and Nakatsuka, T. (2011). Genetic engineering of flavonoid pigments to modify flower color in floricultural plants. Biotechnology Letter, 33: 433-441. [DOI:10.1007/s10529-010-0461-z]
23. Potera, C. (2007). Blooming biotech. Nature Biotechnology, 25: 963-965. [DOI:10.1038/nbt0907-963]
24. Sannikova, V.Y. (2020). Genetic engineering as a way to obtain ornamental plants with a changed flower color. Plant Biotechnology and Breeding, 3(1): 40-45. [DOI:10.30901/2658-6266-2020-1-o1]
25. Tanaka, Y. and Ohmiya, A. (2008). Seeing is believing: engineering anthocyanin and carotenoid biosynthetic pathways. Current Opinion in Biotechnology, 19: 190-197. [DOI:10.1016/j.copbio.2008.02.015]
26. Tanaka, Y., Brugliera, F. and Chandler, S. (2009). Recent progress of flower color modification by biotechnology. International Journal of Molecular Sciences, 10: 5350-5369. [DOI:10.3390/ijms10125350]
27. To, K.Y. and Wang, C.K. (2006). Molecular Breeding of Flower Color. Floriculture, Ornamental and Biotechnology. Global Science Books, Carrollton, GA, USA.
28. Tsuda, S.H., Fukui, Y., Nakamura, N., Katsumoto, Y., Yonekura-Sakakibara, K., Fukuchi-Mizutani, M., Ohira, K., Ueyama, Y., Ohkawa, H., A.Holton, T., Kusumi, T. and Tanaka, Y. (2004). Flower color modification of Petunia hybrida commercial varieties by metabolic engineering. Plant Biotechnology, 21: 377-386. [DOI:10.5511/plantbiotechnology.21.377]
29. Voorhuijzen, M.M., Prins, T.W., Belter, A., Bendiek, J., Brünen-Nieweler, C., van Dijk, J.P., Goerlich, O., Kok, E.J., Pickel, B., Scholtens, I.M.J., Stolz, A. and Grohmann, L. (2020). Molecular characterization and event-specific real-time PCR detection of two dissimilar groups of genetically modified Petunia (Petunia x hybrida) sold on the market. Frontiers in Plant Science, 11: 1047. [DOI:10.3389/fpls.2020.01047]
30. Wang, Y., Xie, X., Ran, X., Chou, S., Jiao, X., Li, E., Zhang, Q., Meng, X. and Li, B. (2018). Comparative analysis of the polyphenols profiles and the antioxidant and cytotoxicity properties of various blue honeysuckle varieties. Open Chemistry, 16: 637-646. [DOI:10.1515/chem-2018-0072]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Keykha Akhar F, Bagheri A, Moshtaghi N, Fakhrfeshani M. The Effect of Chalcone Isomerase (Chi) Gene Silencing on Flavonoids Content in Petunia hybrida using RNAi Technology. pgr 2022; 9 (1) :1-12
URL: http://pgr.lu.ac.ir/article-1-251-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 9, Issue 1 (2022) Back to browse issues page
پژوهش های ژنتیک گیاهی Plant Genetic Researches
Persian site map - English site map - Created in 0.06 seconds with 39 queries by YEKTAWEB 4642