[Home ] [Archive]   [ فارسی ]  
:: About :: Main :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..



 
..
:: Volume 11, Issue 1 (2024) ::
pgr 2024, 11(1): 151-164 Back to browse issues page
Evaluation of the Genetic Diversity for Tomato’s Cultivars and Promising Lines through CBDP Marker
Sahar Amiri , Hooman Salari * , Alireza Etminan
Department of Production Engineering and Plant Genetics, Faculty of Agricultural Science and Engineering, Razi University, Kermanshah, Iran , hooman.salari@razi.ac.ir
Abstract:   (1026 Views)
Tomato is the second important vegetable in the world. Therefore, disclosure the germplasm variation as a precursor for its breeding is highly valuable. The study was conducted to assess the genetic diversity in a collection of tomato germplasm including previously cultivated cultivars, currently being cultivated and promising tomato lines in Iran. Polymorphism analysis between cultivars was performed via 20 CBDP primers. The primers amplified 406 genomic fragments, of which 215 bands showed polymorphism and the average percentage of polymorphism was 51%. The average index of polymorphic information content (PIC) and resolving power (Rp) were estimated as 0.30 and 4.49, respectively, which indicated the relatively appropriate efficiency of the primers' used. The genetic distance between the pairs of studied cultivars according to the Jaccard Coefficient ranged from 0.16 to 0.54 and its average was estimated as 0.38. The lowest and highest genetic distance were observed in Matin and Sana with a value of 0.16 and Hypeel 303 and 693 with a value of 0.54, respectively. Cluster analysis based on the Jaccard distance coefficient and the Neighbor Joining algorithm divided the cultivars into five groups. It is relatively consistence with the results of the analysis to the principal coordinates which showed that the first two components explained 15.04% of the total changes. In conclusion, this research showed that there is to some extent low genetic diversity among the Tomato's cultivars in Iran, while the primers which used revealed the polymorphism between them competently and separated them thoroughly. Based on the indices calculated to evaluate the efficiency of primers, CBDP18 and CBDP12 primers showed better efficiency in differentiating the studied genotypes. Based on these results, the use of diverse genetic resources and development of new varieties is necessary to mitigate vulnerability and the risk of epidemic disease such as fungal pathogens in tomato cultivation.
Keywords: Commercial variety, Genetic diversity, Gene targeting marker, Solanum lycopersicum L.
Full-Text [PDF 715 kb]   (326 Downloads)    
Type of Study: Research | Subject: Molecular genetics
References
1. Abdein, M.A., Abd El-Moneim, D., Taha, S.S., Al-Juhani, W.S. and Mohamed, S.E. (2018). Molecular characterization and genetic relationships among some tomato genotypes as revealed by ISSR and SCoT markers. Egyptian Journal of Genetics and Cytology, 47(1): 139-159.
2. Adhikari, S., Saha, S., Biswas, A., Rana, T.S., Bandyopadhyay, T.K. and Ghosh, P. (2017). Application of molecular markers in plant genome analysis: a review. The Nucleus, 60: 283-297. [DOI:10.1007/s13237-017-0214-7]
3. Ahmed, D.A., Tahir, N.A.R., Salih, S.H. and Talebi, R. (2021). Genome diversity and population structure analysis of Iranian landrace and improved barley (Hordeum vulgare L.) genotypes using arbitrary functional gene-based molecular markers. Genetic Resources and Crop Evolution, 68(3): 1045-1060. [DOI:10.1007/s10722-020-01047-7]
4. Altıntaş, S., Toklu, F.A.R.U.K., Kafkas, S.A.L.I.H., Kilian, B., Brandolini, A. and Özkan, H. (2008). Estimating genetic diversity in durum and bread wheat cultivars from Turkey using AFLP and SAMPL markers. Plant Breeding, 127(1): 9-14. [DOI:10.1111/j.1439-0523.2007.01424.x]
5. Anderson, J.A., Churchill, G.A., Autrique, J.E., Tanksley, S.D. and Sorrells, M.E. (1993). Optimizing parental selection for genetic linkage maps. Genome, 36(1): 181-186. [DOI:10.1139/g93-024]
6. Ansari, A., Sikarwar, P., Lade, S., Yadav, H. and Ranade, S. (2016). Genetic diversity clusters in germplasm of Cluster Bean (Cyamopsis tetragonoloba L., Taub), an important food and an industrial legume crop. Journal of Agricultural Science and Technology, 18(5): 1407-1418.
7. Aslan-Parviz, M., Omidi, M., Rashidi, V., Etminan, A. and Ahmadzadeh, A. (2020). Evaluation of genetic diversity of durum wheat (Triticum durum desf.) genotypes using inter-simple sequence repeat (ISSR) and caat box-derived polymorphism (CBDP) markers. Genetika, 52(3): 895-909. [DOI:10.2298/GENSR2003895A]
8. Bai, Y. and Lindhout, P. (2007). Domestication and breeding of tomatoes: what have we gained and what can we gain in the future?. Annals of Botany, 100(5): 1085-1094. [DOI:10.1093/aob/mcm150]
9. Benoist, C., O'hare, K., Breathnach, R. and Chambon, P. (1980). The ovalbumin gene-sequence of putative control regions. Nucleic Acids Research, 8(1): 127-142. [DOI:10.1093/nar/8.1.127]
10. Bergougnoux, V. (2014). The history of tomato: from domestication biopharming. Biotechnology Advances, 32(1): 170-189. [DOI:10.1016/j.biotechadv.2013.11.003]
11. Collard, B.C.Y. and Mackill, D.J. (2009a). Start codon targeted (SCoT) polymorphism: a simple, novel DNA marker technique for generating gene-targeted markers in plants. Plant Molecular Biology Reporter, 27(1): 86-93. [DOI:10.1007/s11105-008-0060-5]
12. Collard, B.C.Y. and Mackill, D.J. (2009b). Conserved DNA-derived polymorphism (CDDP): a simple and novel method for generating DNA markers in plants. Plant Molecular Biology Reporter, 27(4): 558-562. [DOI:10.1007/s11105-009-0118-z]
13. Dellaporta, S.L., Wood, J. and Hicks, J.B. (1983). A plant DNA minipreparation: version II. Plant Molecular Biology Reporter, 1(4): 19-21. [DOI:10.1007/BF02712670]
14. Ditta, A., Zhou, Z., Cai, X., Wang, X., Okubazghi, K.W., Shehzad, M., Xu, Y., Hou, Y., Sajid Iqbal, M., Khan, M.K.R. and Wang, K. (2018). Assessment of genetic diversity, population structure, and evolutionary relationship of uncharacterized genes in a novel germplasm collection of diploid and allotetraploid Gossypium accessions using EST and genomic SSR markers. International Journal of Molecular Sciences, 19(8): 2401. [DOI:10.3390/ijms19082401]
15. Etminan, A., Pour-Aboughadareh, A., Mehrabi, A.A., Shooshtari, L., Ahmadi-Rad, A. and Moradkhani, H. (2019). Molecular characterization of the wild relatives of wheat using CAAT-box derived polymorphism. Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology, 153(3): 398-405. [DOI:10.1080/11263504.2018.1492993]
16. Fabriki-Ourang, S., Golmohammadie, M. and Karimi, H. (2019). Evaluation of genetic relationships among promising and commercial olive varieties using gene-targeted CAAT box-derived polymorphism (CBDP) markers. Agricultural Biotechnology Journal, 10(4): 93-109 (In Persian). [DOI:10.1007/s12041-019-1121-2]
17. Fabriki-Ourang, S. and Karimi, H. (2019). Assessment of genetic diversity and relationships among Salvia species using gene targeted CAAT box-derived polymorphism markers. Journal of Genetics, 98(3): 1-10. [DOI:10.1007/s12041-019-1121-2]
18. FAO. (2021). Food and Agriculture Organization, Statistics: FAOSTAT agriculture From http://faostat. fao.org.
19. Korir, N.K., Diao, W., Tao, R., Li, X., Kayesh, E., Li, A., Zhen, W. and Wang, S. (2014). Genetic diversity and relationships among different tomato varieties revealed by EST-SSR markers. Genetics and Molecular Research, 13(1): 43-53. [DOI:10.4238/2014.January.8.3]
20. Kumar, P., Gupta, V.K., Misra, A.K., Modi, D.R. and Pandey, B.K. (2009). Potential of molecular markers in plant biotechnology. Plant Omics, 2(4): 141-162.
21. Gorji, A.M., Poczai, P., Polgar, Z. and Taller, J. (2011). Efficiency of arbitrarily amplified dominant markers (SCoT, ISSR and RAPD) for diagnostic fingerprinting in tetraploid potato. American Journal of Potato Research, 88(3): 226-237. [DOI:10.1007/s12230-011-9187-2]
22. Grover, A. and Sharma, P.C. (2016). Development and use of molecular markers: past and present. Critical Reviews in Biotechnology, 36(2): 290-302. [DOI:10.3109/07388551.2014.959891]
23. Heidari Tootshami, Z. and Salari, H. (2024). Genetic diversity of tomato's cultivars assessed through ISSR marker. Agricultural Biotechnology Journal, 16(1): 175-194 (In Persian).
24. Heikrujam, M., Kumar, J. and Agrawal, V. (2015). Genetic diversity analysis among male and female Jojoba genotypes employing gene targeted molecular markers, start codon targeted (SCoT) polymorphism and CAAT box-derived polymorphism (CBDP) markers. Meta Gene, 5: 90-97. [DOI:10.1016/j.mgene.2015.06.001]
25. Henareh, M., Dursun, A. and Mandoulakani, B.A. (2015). Genetic diversity in tomato landraces collected from Turkey and Iran revealed by morphological characters. Acta Scientiarum Polonorum Hortorum Cultus, 14(2): 87-96.
26. Hu, J. and Vick, B.A. (2003). Target region amplification polymorphism: a novel marker technique for plant genotyping. Plant Molecular Biology Reporter, 21(3): 289-294. [DOI:10.1007/BF02772804]
27. Jin, L., Zhao, L., Wang, Y., Zhou, R., Song, L., Xu, L., Cui, X., Li, R., Yu, W. and Zhao, T. (2019). Genetic diversity of 324 cultivated tomato germplasm resources using agronomic traits and InDel markers. Euphytica, 215(4): 1-16. [DOI:10.1007/s10681-019-2391-8]
28. Li, G. and Quiros, C.F. (2001). Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theoretical and Applied Genetics, 103(2): 455-461. [DOI:10.1007/s001220100570]
29. MirMohammadi Maibody, S.A.M. and Golkar, P. (2019). Application of DNA molecular markers in plant breeding. Plant Genetic Researches, 6(1): 1-30 (In Persian). [DOI:10.29252/pgr.6.1.1]
30. Mirzaei, S. and Salari, H. (2021). Study on the genetic diversity of tomato's cultivars via SCoT Marker. Agricultural Biotechnology Journal, 13(4): 101-120 (In Persian).
31. Mohammadi, S.A. and Prasanna, B.M. (2003). Analysis of genetic diversity in crop plants-salient statistical tools and considerations. Crop Science, 43(4): 1235-1248. [DOI:10.2135/cropsci2003.1235]
32. Nabipour, M., Farsi, M., Nemmati, H. and Malekzadeh, S. (2011). Study of genetic diversity of tomato genotypes using AFLP molecular markers and its relationship with heterosis. Iranian Journal of Field Crops Research, 10: 354-360 (In Persian).
33. Osawaru, M.E., Ogwu, M.C. and Aiwansoba, R.O. (2015). Hierarchical approaches to the analysis of genetic diversity in plants: a systematic overview. University of Mauritius Research Journal, 21: 1-36.
34. Peakall, R.O.D. and Smouse, P.E. (2006). GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes, 6(1): 288-295. [DOI:10.1111/j.1471-8286.2005.01155.x]
35. Perrier, X.A.F.P., Flori, A. and Bonnot, F. (2003). Data analysis methods. Genetic Diversity of Cultivated Tropical Plants, 43: 76.
36. Pidigam, S., Thuraga, V., Munnam, S.B., Amarapalli, G., Kuraba, G., Pandravada, S.R., Nimmarajula, S. and Sudini, H.K. (2021). Genetic diversity, population structure and validation of SSR markers linked to Sw-5 and I-2 genes in tomato germplasm. Physiology and Molecular Biology of Plants, 27(8): 1695-1710. [DOI:10.1007/s12298-021-01037-8]
37. Prevost, A. and Wilkinson, M.J. (1999). A new system of comparing PCR primers applied to ISSR fingerprinting of potato cultivars. Theoretical and Applied Genetics, 98(1): 107-112. [DOI:10.1007/s001220051046]
38. Puneeth, P.V., Lata, S., Yadav, R.K., Wankhede, D.P., Tomar, B.S., Choudary, H., Tomer, A., Bidaramali, V. and Talukdar, A. (2023). Exploring the genetic diversity using CAAT box-derived polymorphism (CBDP) and start codon targeted (SCoT) markers in cultivated and wild species of okra (Abelmoschus esculentus (L.) Moench). Genetic Resources and Crop Evolution, 70(3): 749-761. [DOI:10.1007/s10722-022-01458-8]
39. Rahimi, J., Amini, F., Ramshini, H., Abedi, M. and Lotfi, M. (2023). Estimation of gene action and genetic parameters for morphological traits in F1, F2 and F3 generations of tomato (Lycopersicum esculantum L.). Plant Genetic Researches, 9(2): 71-82 (In Persian). [DOI:10.22034/pgr.9.2.6]
40. Ren, X., Zhang, X. and Wang, S. (2011). Genetic diversity and relationship in 47 accessions of tomato by AFLP markers. In 2011 International Conference on Remote Sensing, Environment and Transportation Engineering, 7605-7609. IEEE, Nanjing, China. [DOI:10.1109/RSETE.2011.5966135]
41. Sarvmeili, J., Saidi, A., Farrokhi, N., Pouresmael, M. and Talebi, R. (2020). Genetic diversity and population structure analysis of landrace and wild relatives of lentil germplasm using CBDP marker. Cytology and Genetics, 54(6): 566-573. [DOI:10.3103/S0095452720060092]
42. Shaygan, N., Etminan, A., Majidi Hervan, I., Azizinezhad, R. and Mohammadi, R. (2021). The study of genetic diversity in a minicore collection of durum wheat genotypes using agro-morphological traits and molecular markers. Cereal Research Communications, 49: 141-147. [DOI:10.1007/s42976-020-00073-6]
43. Singh, A.K., Rana, M.K., Singh, S., Kumar, S., Kumar, R. and Singh, R. (2014). CAAT box-derived polymorphism (CBDP): a novel promoter-targeted molecular marker for plants. Journal of Plant Biochemistry and Biotechnology, 23(2): 175-183. [DOI:10.1007/s13562-013-0199-5]
44. Singh, B.D. and Singh, A.K. (2015). Phylogenetic Relationships and Genetic Diversity. In: Singh, B.D. and Singh, A.K., Eds., Marker-Assisted Plant Breeding: Principles and Practices, pp. 319-321. Springer New Delhi Publisher, Heidelberg, DE. [DOI:10.1007/978-81-322-2316-0_11]
45. Soorni, A., Nazeri, V., Fatahi, R. and Ahadi, E. (2013). Study of genetic diversity of medicinal plant Leonurus cardiac some population in Iran using RAPD Marker. Agricultural Biotechnology Journal, 5(2): 101-118 (In Persian).
46. Spooner, D., Van Treuren, R. and De Vicente, M.C. (2005). Genbank Management. In: Spooner, D., Van Treuren, R. and De Vicente, M.C., Eds., Molecular Markers for Genebank Management, pp. 36-39. Bioversity International Publisher, Rome, IT
47. Talebi, R., Nosrati, S., Etminan, A. and Naji, A.M. (2018). Genetic diversity and population structure analysis of landrace and improved safflower (Cartamus tinctorious L.) germplasm using arbitrary functional gene-based molecular markers. Biotechnology and Biotechnological Equipment, 32(5): 1183-1194. [DOI:10.1080/13102818.2018.1499443]
48. Wang, Y., Tang, X., Cheng, Z., Mueller, L., Giovannoni, J. and Tanksley, S.D. (2006). Euchromatin and pericentromeric heterochromatin: comparative composition in the tomato genome. Genetics, 172(4): 2529-2540. [DOI:10.1534/genetics.106.055772]
49. Zhong, X.B., Fransz, P.F., Wennekes-van Eden, J., Ramanna, M.S., van Kammen, A., Zabel, P. and Hans de Jong, J. (1998). FISH studies reveal the molecular and chromosomal organization of individual telomere domains in tomato. Plant Journal, 13(4): 507-517. [DOI:10.1046/j.1365-313X.1998.00055.x]
Send email to the article author



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Amiri S, Salari H, Etminan A. Evaluation of the Genetic Diversity for Tomato’s Cultivars and Promising Lines through CBDP Marker. pgr 2024; 11 (1) :151-164
URL: http://pgr.lu.ac.ir/article-1-298-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 11, Issue 1 (2024) Back to browse issues page
پژوهش های ژنتیک گیاهی Plant Genetic Researches
Persian site map - English site map - Created in 0.07 seconds with 38 queries by YEKTAWEB 4657