[Home ] [Archive]   [ فارسی ]  
:: About :: Main :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..



 
..
:: Volume 10, Issue 1 (2023) ::
pgr 2023, 10(1): 157-174 Back to browse issues page
Evaluation of Genetic Diversity and Identifying Relationships of Seed Characteristics with SSR and SCoT Markers in Common Bean
Maryam Ghorbani , Kianoosh Cheghamirza * , Saeed Abbasi , Zahra Aziziaram
Production Engineering and Plant Genetics Department, Razi University, Kermanshah, Iran , cheghamirza@razi.ac.ir
Abstract:   (2268 Views)
The current research was carried out to evaluate genetic diversity of 18 common bean cultivars and promising lines and to determine SSR and SCoT informative markers associated with 14 seed characteristics including the number of seeds per pod, 100 seed weight, seed length, seed width, the contents of crude protein, total soluble sugar, starch content, crude fat, iron, calcium, magnesium, zinc, uronic acid, and mineral ash. The polymorphism information content (PIC) values varied from 0.2 to 0.5 with an average of 0.39 for the SSR markers and from 0.19 to 0.42 with an average of 0.34 for the SCoT markers. The total average resolving power of SSR and SCoT markers were 1.54 and 5.34, respectively, indicating higher efficiency of SCoT markers than SSR markers for the diversity analysis. The common bean studied genotypes were clustered into three distinct groups for both markers based on the Complete Linkage method. Principal coordinate analysis (PCoA) for the SSR markers revealed that the first two principal components justified 59.05% of whole variation. For the SCoT marker, on the other hand, the fraction of variances explained by the first two principal components was equal to 25.43 indicating a better distribution of SCoT markers than SSR markers in the common bean genome. Analysis of molecular variance based on the grouping obtained from cluster analysis showed that the diversity within the group based on SSR and SCoT markers was equal to 89 and 78%, respectively. The results of regression analysis for the studied markers and the bean seed characteristics showed the existence of a significant relationships between a single marker with the several studied traits. This could indicate the association or linkage of the marker locations. Twelve out of 14 of the investigated common bean seed characteristics showed a significant relationship with at least one molecular marker.
Keywords: Marker-trait association, Regression analysis, Seed quality, Phaseolus vulgaris
Full-Text [PDF 912 kb]   (749 Downloads)    
Type of Study: Research | Subject: Molecular genetics
Accepted: 2023/08/1
References
1. AbdulHusseinAl-Badeiry, N., Al-Saadi, A.H. and Merza, T.K. (2014). Analysis of genetic diversity in maize (Zea mays L.) varieties using simple sequence repeat (SSR) markers. Journal of Babylon University, 22(6): 1768-1774.
2. Ahmad, K.M.S. (2018). Genetic diversity of common bean (Phaseolus vulgaris) cultivars from different origins revealed by microsatellite markers. Journal of Advances in Biology and Biotechnology, 17(4): 1-9. [DOI:10.9734/JABB/2018/40779]
3. Ali, M.L., Rajewski, J.F., Baenziger, P.S., Gill, K.S., Eskridge, K.M. and Dweikat, I. (2008). Assessment of genetic diversity and relationship among a collection of US sweet sorghum germplasm by SSR markers. Molecular Breeding, 21(4): 497-509. [DOI:10.1007/s11032-007-9149-z]
4. Al-Samarai, F.R. and Al-Kazaz, A.A. (2015). Molecular markers: an introduction and applications. European Journal of Molecular Biotechnology, 9(3): 118-130. [DOI:10.13187/ejmb.2015.9.118]
5. Altıntas, S., Toklu, F., Kafkas, S., Kilian, B., Brandolini, A. and H. Zkan, O. (2008). Estimating genetic diversity in durum and bread wheat cultivars from Turkey using AFLP and sampl markers. Plant Breeding, 127(1): 9-14. [DOI:10.1111/j.1439-0523.2007.01424.x]
6. Anino, C., Onyango, A.N., Imathiu, S., Maina, J. and Onyangore, F. (2019). Chemical composition of the seed and 'milk'of three common bean (Phaseolus vulgaris L) varieties. Journal of Food Measurement and Characterization, 13(2): 1242-1249. [DOI:10.1007/s11694-019-00039-1]
7. Asfaw, A., Blair, M.W. and Almekinders, C. (2009). Genetic diversity and population structure of common bean (Phaseolus vulgaris L.) landraces from the East African highlands. Theoretical and Applied Genetics, 120(1): 1-12. [DOI:10.1007/s00122-009-1154-7]
8. Aziziaram, Z. (2022). Identification of grain chemical content QTLs in common bean. Ph.D. Thesis, Razi University, Kermanshah, Iran (In Persian).
9. Aziziaram, Z., Cheghamirza, K., Zarei, L. and Beheshti-Alagha, A. (2021). Chemical and morphological characteristics of common bean seedand evaluating genetic advancein commercial classes. Cellular and Molecular Biology, 67(6): 89-99. [DOI:10.14715/cmb/2021.67.6.13]
10. Bellucci, E., Bitocchi, E., Rau, D., Rodriguez, M., Biagetti, E., Giardini, A., Attene, G., Nanni, L. and Papa, R. (2014). Genomics of origin, domestication and evolution of Phaseolus vulgaris. Genomics of Plant Genetic Resources, 1: 483-507. [DOI:10.1007/978-94-007-7572-5_20]
11. Bhattacharyya, P., Kumaria, S., Diengdoh, R. and Tandon, P. (2014). Genetic stability and phytochemical analysis of the in vitro regenerated plants of Dendrobium nobile Lindl. an endangered medicinal orchid. Meta Gene, 2: 489-504. [DOI:10.1016/j.mgene.2014.06.003]
12. Bitocchi, E., Nanni, L., Bellucci, E., Rossi, M., Giardini, A., Zeuli, P.S., Logozzo, G., Stougaard, J., McClean, P., Attene, G. and Papa, R. (2012). Mesoamerican origin of the common bean (Phaseolus vulgaris L.) is revealed by sequence data. Proceedings of the National Academy of Sciences, 109(14): 788-796. [DOI:10.1073/pnas.1108973109]
13. Bitocchi, E., Rau, D., Bellucci, E., Rodriguez, M., Murgia, M.L., Gioia, T., Santo, D., Nanni, L., Attene, G. and Papa, R. (2017). Beans (Phaseolus ssp.) as a model for understanding crop evolution. Frontiers in Plant Science, 8: 722. [DOI:10.3389/fpls.2017.00722]
14. Blair, M.W., Hurtado, N., Chavarro, C.M., Muñoz-Torres, M.C., Giraldo, M.C., Pedraza, F. and Wing, R. (2011). Gene-based SSR markers for common bean (Phaseolus vulgaris L.) derived from root and leaf tissue ESTs: an integration of the BMc series. BMC Plant Biology, 11: 1-10. [DOI:10.1186/1471-2229-11-50]
15. Blumenkrantz, N. and Asboe-Hansen, G. (1973). New method for quantitative determination of uronic acids. Analytical Biochemistry, 54(2): 484-489. [DOI:10.1016/0003-2697(73)90377-1]
16. Bradstreet, R.B. (1954). Kjeldahl method for organic nitrogen. Analytical Chemistry, 26(1): 185-187. [DOI:10.1021/ac60085a028]
17. Butt, M.S. and Rizwana, B. (2010). Nutritional and functional properties of some promising legumes protein isolates. Pakistan Journal of Nutrition, 9(4): 373-379. [DOI:10.3923/pjn.2010.373.379]
18. Carvalho, M.S., de Oliveira Moulin Carias, C.M., Silva, M.A., da Silva Ferreira, M.F., de Souza, T.L.P.O., Posse, S.C.P. and Ferreira, A. (2020). Genetic diversity and structure of landrace accessions, elite lineages and cultivars of common bean estimated with SSR and SNP markers. Molecular Biology Reports, 47: 6705-6715. [DOI:10.1007/s11033-020-05726-7]
19. Collard, B.C. and Mackill, D.J. (2009). Start Codon Targeted (SCoT) polymorphism: a simple, novel DNA marker technique for generating gene-targeted markers in plants. Plant Molecular Biology Reporter, 27(1): 86-93. [DOI:10.1007/s11105-008-0060-5]
20. Collard, B.C.Y., Jahufer, M.Z.Z., Brouwer, J. and Bandpang, E.C.K. (2005). An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concept. Euphytica, 142(1): 169-196. [DOI:10.1007/s10681-005-1681-5]
21. Dellaporta, S., Wood, L. and Hicks, J.B. (1983). A plant DNA minipreparation: version II. Plant Molecular Biology Reporter, 1(14): 19-21. [DOI:10.1007/BF02712670]
22. Desiderio, F., Bitocchi, E., Bellucci, E., Rau, D., Rodriguez, M., Attene, G., Papa, R. and Nanni, L. (2013). Chloroplast microsatellite diversity in Phaseolus vulgaris. Frontiers in Plant Science, 3: 312. [DOI:10.3389/fpls.2012.00312]
23. DeWoody, J.A., Honeycutt, R.L. and Skow, L.C. (1995). Microsatellite markers in white-tailed deer. The Journal of Heredity, 86(4): 317-319. [DOI:10.1093/oxfordjournals.jhered.a111593]
24. FAO. (2021). FAOSTAT. Food and Agricultural Organization of the United Nations. Available at http://www.fao.org/faostat/en/#data/QC. FAO. Rome, Italy.
25. Fisseha, Z., Tesfaye, K., Dagne, K., Blair, M. W., Harvey, J., Kyallo, M. and Gepts, P. (2016). Genetic diversity and population structure of common bean (Phaseolus vulgaris L) germplasm of Ethiopia as revealed by microsatellite markers. African Journal of Biotechnology, 15(52): 2824-2847. [DOI:10.5897/AJB2016.15464]
26. Geleta, N., Labuschagne, M.T. and Viljoen, C.D. (2006). Genetic diversity analysis in sorghum germplasm as estimated by AFLP, SSR and morpho-agronomical markers. Biodiversity and Conservation, 15(10): 3251-3265. [DOI:10.1007/s10531-005-0313-7]
27. Gheitaran, P.S., Mohammadi, A.S. and Sadeghzadeh, B. (2014). Identification of genomic oregions controlling iron concentration and content in shoot of barley in A × B doubled hoploid mapping population. Plant Genetic Researches, 1(1): 1-12 (In Persian). [DOI:10.29252/pgr.1.1.1]
28. Gholami, Z. and Ansari, S. (2021). Effects of roasting conditions on physicochemical properties of the watermelon seed. Iranian Journal of Chemistry and Chemical Engineering, 40(2): 615-626.
29. Gioia, T., Logozzo, G., Marzario, S., Spagnoletti Zeuli, P. and Gepts, P. (2019). Evolution of SSR diversity from wild types to US advanced cultivars in the Andean and Mesoamerican domestications of common bean (Phaseolus vulgaris). PLoS ONE, 14(1): e0211342. [DOI:10.1371/journal.pone.0211342]
30. Gyang, P.J., Nyaboga, E.N. and Muge, E.K. (2017). Molecular characterization of common bean (Phaseolus vulgaris L.) genotypes using microsatellite markers. Journal of Advances in Biology and Biotechnology, 13(2): 1-15. [DOI:10.9734/JABB/2017/33519]
31. Hayward, A.C., Tollenaere, R., Dalton-Morgan, J. and Batley, J. (2015). Molecular marker applications in plants. Plant Genotyping, 1245: 13-27. [DOI:10.1007/978-1-4939-1966-6_2]
32. Horwitz, W. (1975). Official methods of analysis, vol: 222. Association of Official Analytical Chemists, Washington, DC, USA.
33. Hromadová, Z., Mikolášová, L., Balážová, Ž., Vivodík, M., Chňapek, M. and Gálová, Z. (2022). Genetic diversity analysis of common bean (Phaseolus vulgaris L.) genotypes using scot polymorphism. Journal of Microbiology, Biotechnology and Food Sciences, 12(1): e5919-e5919. [DOI:10.55251/jmbfs.5919]
34. Ipek, M., Seker, M., Ipek, A. and Gul, M.K. (2015). Identification of molecular markers associated with fruit traits in olive and assessment of olive core collection with AFLP markers and fruit traits. Genetics Molecular Research, 14(1): 2762-2774. [DOI:10.4238/2015.March.31.6]
35. Isaac, R.A. and Kerber, J.D. (1971). Atomic absorption and flame photometry: techniques and uses in soil, plant, and water analysis. Instrumental Methods for Analysis of Soils and Plant Tissue, 1: 17-37. [DOI:10.2136/1971.instrumentalmethods.c2]
36. Joshi, P.K. and Rao, P.P. (2017). Global pulses scenario: status and outlook. Annals of the NewYork Academy of Sciences, 1392(1): 6-17. [DOI:10.1111/nyas.13298]
37. Kumar, N., Boatwright, J.L., Brenton, Z.W., Sapkota, S., Ballén-Taborda, C., Myers, M.T., Cox, W.A., Jordan, K.E., Kresovich, S. and Boyles, R.E. (2023). Development and characterization of a sorghum multiparent advanced generation intercross (MAGIC) population for capturing diversity among seed parent gene pool. G3: Genes, Genomes, Genetics, 13(4): jkad037. [DOI:10.1093/g3journal/jkad037]
38. Litt, M. and Luty J.A. (1989). A hyper variable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. The American Journal of Human Genetics, 44(3): 397-401.
39. Liu, K., Goodman, M., Muse, S., Smith, J.S., Buckler, E. and Doebley, J. (2003). Genetic structure and diversity among maize inbred lines as inferred from DNA microsatellites. Genetics, 165(4): 2117-2128. [DOI:10.1093/genetics/165.4.2117]
40. Liu, Y. and Hou, W. (2010). Genetic diversity of faba bean germplasms in Qinghai and core germplasm identified based on AFLP analysis. Legume Genomics and Genetics, 1(1): 1-6. [DOI:10.5376/lgg.2010.01.0001]
41. MacRae, J.C. (1971). Quantitative measurement of starch in very small amounts of leaf tissue. Planta, 96(2): 101-108. [DOI:10.1007/BF00386360]
42. MacRae, J.C. and Armstrong, D.G. (1968). Enzyme method for determination of α‐linked glucose polymers in biological materials. Journal of the Science of Food and Agriculture, 19(10): 578-581. [DOI:10.1002/jsfa.2740191006]
43. Maji, A.T. and Shaibu, A.A. (2012). Application of principal component analysis for rice germplasm characterization and evaluation. Journal of Plant Breeding and Crop Science, 4(6): 87-93. [DOI:10.5897/JPBCS11.093]
44. Makunja, R.N. (2020). Characterization of Kenyan common bean (Phaseolus Vulgaris L.) accessions for resistance to common bacterial blight using start codon targeted (SCoT) polymorphism markers. Ph.D. Thesis, University of Nairobi, Kenya.
45. Maras, M., Pipan, B., Šuštar-Vozlič, J., Todorović, V., Đurić, G., Vasić, M. and Meglič, V. (2015). Examination of genetic diversity of common bean from the Western Balkans. Journal of the American Society for Horticultural Science, 140(4): 308-316. [DOI:10.21273/JASHS.140.4.308]
46. Matondo, N.K., Yao, K.N., Kyalo, M., Skilton, R., Nkongolo, K.K., Mumba, D., Tshilenge, D.K. and Lubobo, A.K. (2017). Assessment of the genetic diversity and the relationship among common bean (Phaseolus vulgaris L.) accessions from DR-Congo germplasm using SSR molecular markers. International Journal of Current Research, 9(3): 47814-47821.
47. Matus, I.A. and Hayes, P.M. (2002). Genetic diversity in three groups of barley germplasm assessed by simple sequence repeats. Genom, 45(6): 1095-1106. [DOI:10.1139/g02-071]
48. Mir Drikvand, R., Najafian, G., Bihamta, M.R. and Ebrahimi, A. (2015). Detection of QTLs associated to some grain traits in bread wheat (Triticum aestivum L.), using association mapping. Plant Genetic Researches, 1(2): 43-54 (In Persian). [DOI:10.29252/pgr.1.2.43]
49. Mohammadzedeh, M., Fattahi, M.R., Zamani, Z. and Khadivi-Khub, A. (2014). Study of association between molecular markers and fruit characters in hazelnut using multiple regression analysis. Journal of Cell & Tissue (JCT), 5(3): 289-299.
50. Moura, L.S., Carvalho, J., Stetanini, M.B., Ming, L.C. and Meireles, M.A.A. (2005) Supercritica fluid extraction from fennel (Foeniculum Vulgare) global yield. composition and kinetic data. The Journal of supercritical Flouids, 35(3): 212-219. [DOI:10.1016/j.supflu.2005.01.006]
51. Müller, B.S., Pappas, G.J., Valdisser, P.A., Coelho, G.R., de Menezes, I.P., Abreu, A.G., Borba, T.C., Sakamoto, T., Brondani, C. and Barros, E.G. (2015). An operational SNP panel integrated to SSR marker for the assessment of genetic diversity and population structure of the common bean. Plant Molecular Biology Reporter, 33: 1697-1711. [DOI:10.1007/s11105-015-0866-x]
52. Mulpuri, S., Muddanuru, T. and Francis, G. (2013). Start codon targeted (SCoT) polymorphism in toxic and non-toxic accessions of Jatropha curcas L. and development of a codominant SCAR marker. Plant Science, 207: 117-127. [DOI:10.1016/j.plantsci.2013.02.013]
53. Murube, E., Beleggia, R., Pacetti, D., Nartea, A., Frascarelli, G., Lanzavecchia, G., Bellucci, E., Nanni, L., Gioia, T., Marciello, U. and Esposito, S. (2021). Characterization of nutritional quality traits of a common bean germplasm collection. Foods. 10(7): 1572. [DOI:10.3390/foods10071572]
54. Nadeem, M.A., Nawaz, M.A., Shahid, M.Q., Doğan, Y., Comertpay, G., Yıldız, M., Hatipoğlu, R., Ahmad, F., Alsaleh, A., Labhane, N. and Özkan, H. (2018). DNA molecular markers in plant breeding: current status and recent advancements in genomic selection and genome editing. Biotechnology and Biotechnological Equipment, 32(2): 261-285. [DOI:10.1080/13102818.2017.1400401]
55. Nkongolo, K.K., Mbuya, K., Mehes-Smith, M. and Kalonji-Mbuyi, A. (2011). Molecular analysis of quality protein (QPM) and normal maize varieties from the DR-Congo breeding program. African Journal of Biotechnology, 10(65): 14293-14301. [DOI:10.5897/AJB11.1491]
56. Okii, D., Tukamuhabwa, P., Odong, T., Namayanja, A., Mukabaranga, J., Paparu, P. and Gepts, P. (2014). Morphological diversity of tropical common bean germplasm. African Crop Science Journal, 22(1): 59-68.
57. Ouji, A., El Bok, S., Syed, N.H., Abdellaoui, R., Rouaissi, M., Flavell, A.J. and El Gazzah, M. (2012). Genetic diversity of faba bean (Vicia faba L.) populations revealed by sequence specific amplified polymorphism (SSAP) markers. African Journal of Biotechnology, 11(9): 2162-2168. [DOI:10.5897/AJB11.2991]
58. Santhosh, W.G., Shobha, D. and Melwyn, G.S. (2009). Assessment of genetic diversity in cashew germplasm using RAPD and ISSR markers. Scientia Horticulturae, 120(3): 411-417. [DOI:10.1016/j.scienta.2008.11.022]
59. Savić, A., Pipan, B., Vasić, M. and Meglič, V. (2021). Genetic diversity of common bean (Phaseolus vulgaris L.) germplasm from Serbia, as revealed by single sequence repeats (SSR). Scientia Horticulturae, 15(288): 110405. [DOI:10.1016/j.scienta.2021.110405]
60. Shafii Khorshidi, M., Bihamta, M.R., Khialparast, F. and Naghavi, M. (2012) Identify informative markers Microsatellite in beans (Phaseolus vulgaris) genotypes. 12th Iranian Genetic Congress, Tehran, Iran (In Persian).
61. Shehzad, T., Okuizumi, H., Kawase, M. and Okuno, K. (2009). Development of SSR-based sorghum (Sorghum bicolor (L.) Moench) diversity research set of germplasm and its evaluation by morphological traits. Genetic Resources and Crop Evolution, 56(6): 809-827. [DOI:10.1007/s10722-008-9403-1]
62. Singh, R., van Heusden, A.W. and Yadav, R.C. (2013). A comparative genetic diversity analysis in mungbean (Vigna radiata L.) using inter-simple sequence repeat (ISSR) and amplified fragment length polymorphism (AFLP). African Journal of Biotechnology, 12(47): 6574-6582. [DOI:10.5897/AJB11.2882]
63. Udoh, A.P. (2000). Atomic absorption spectrometric determination of calcium and other metallic elements in some animal protein sources. Talanta, 52(4): 749-754. [DOI:10.1016/S0039-9140(00)00368-4]
64. Yeken, M.Z., Emiralioğlu, O., Çiftçi, V., Bayraktar, H., Palacioğlu, G. and Özer, G. (2022). Analysis of genetic diversity among common bean germplasm by start codon targeted (SCoT) markers. Molecular Biology Reports, 49(5): 3839-3847. [DOI:10.1007/s11033-022-07229-z]
Send email to the article author



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ghorbani M, Cheghamirza K, Abbasi S, Aziziaram Z. Evaluation of Genetic Diversity and Identifying Relationships of Seed Characteristics with SSR and SCoT Markers in Common Bean. pgr 2023; 10 (1) :157-174
URL: http://pgr.lu.ac.ir/article-1-272-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 10, Issue 1 (2023) Back to browse issues page
پژوهش های ژنتیک گیاهی Plant Genetic Researches
Persian site map - English site map - Created in 0.07 seconds with 38 queries by YEKTAWEB 4657