[Home ] [Archive]   [ فارسی ]  
:: About :: Main :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..



 
..
:: Volume 6, Issue 2 (2020) ::
pgr 2020, 6(2): 33-42 Back to browse issues page
Evaluation of MYB93 and MAD8 Genes in Transgenic and Non-Transgenic Rice
Kobra Arab , Rudabeh Ravash * , Behrouz Shiran
Department of Plant Breeding and Biotechnology, Faculty of Agriculture, Shahrekord University , r.ravash@sku.ac.ir
Abstract:   (13726 Views)
Increasing drought tolerance, especially in rice, which is one of the most important crops in Asia, is necessary. Transcription factors are specific sequence DNA-binding proteins that are capable of activating or suppressing transcription. These proteins regulate gene expression levels by binding to cis regulatory elements in the promoter of target genes to control various biological processes such as growth, cell division and response to environmental stresses. In this study, MAD8 and MYB93 genes that were involved in drought stress in rice were considered in two leaf and anther tissues at 0, 24, 48, 72 h and one week after stopping irrigation. The results of q-PCR analysis showed significant expression changes of these transcription factor genes under drought stress conditions. In this study, a significant increase in the expression of these genes at 24 h after drought stress in transgenic plants (Promoter region with accession: NC_029264.1 and GUS gene have transformed) compared to non-transgenic plants showed a relationship between these transcription factors and higher expression of transported promoter in transgenic plants.
Keywords: Rice, Abiotic stress, Transcription factors, MYB93, MAD8
Full-Text [PDF 1271 kb]   (1935 Downloads)    
Type of Study: Research | Subject: Molecular genetics
References
1. Abe, H., Yamaguchi-Shinozaki, K., Urao, T., Iwasaki, T., Hosokawa, D. and Shinozaki, K. (1997). Role of Arabidopsis MYC and MYB homologs in drought-and abscisic acid-regulated gene expression. The Plant Cell, 9: 1859-1868. [DOI:10.1105/tpc.9.10.1859]
2. Anderson, M.A., Cornish, E., Mau, S.L., Williams, E., Hoggart, R., Atkinson, A., Bonig, I., Grego, B., Simpson, R. and Roche, P. (1986). Cloning of cDNA for a stylar glycoprotein associated with expression of self-incompatibility in Nicotiana alata. Nature, 321: 38. [DOI:10.1038/321038a0]
3. Baldoni, E., Genga, A. and Cominelli, E. (2015). Plant MYB transcription factors: their role in drought response mechanisms. International Journal of Molecular Sciences, 16: 15811-15851. [DOI:10.3390/ijms160715811]
4. Benfey, P.N. and Weigel, D. (2001). Transcriptional networks controlling plant development. Plant Physiology, 125: 109-111. [DOI:10.1104/pp.125.1.109]
5. Cartharius, K., Frech, K., Grote, K., Klocke, B., Haltmeier, M., Klingenhoff, A., Frisch, M., Bayerlein, M. and Werner, T. (2005). MatInspector and beyond: promoter analysis based on transcription factor binding sites. Bioinformatics, 21: 2933-2942. [DOI:10.1093/bioinformatics/bti473]
6. Dubos, C., Stracke, R., Grotewold, E., Weisshaar, B., Martin, C. and Lepiniec, L. (2010). MYB transcription factors in Arabidopsis. Trends in Plant Science, 15: 573-581. [DOI:10.1016/j.tplants.2010.06.005]
7. Goodrich, J., Carpenter, R. and Coen, E.S. (1992). A common gene regulates pigmentation pattern in diverse plant species. Cell, 68: 955-964. [DOI:10.1016/0092-8674(92)90038-E]
8. Katiyar, A., Smita, S., Lenka, S.K., Rajwanshi, R., Chinnusamy, V. and Bansal, K.C. (2012). Genome-wide classification and expression analysis of MYB transcription factor families in rice and Arabidopsis. BMC Genomics, 13: 544. [DOI:10.1186/1471-2164-13-544]
9. Kazan, K. (2015). Diverse roles of jasmonates and ethylene in abiotic stress tolerance. Trends in Plant Science, 20: 219-229. [DOI:10.1016/j.tplants.2015.02.001]
10. Kim, Y.J., Lee, S.H. and Park, K.Y. (2004). A leader intron and 115-bp promoter region necessary for expression of the carnation S-adenosylmethionine decarboxylase gene in the pollen of transgenic tobacco. FEBS Letters, 578: 229-235. [DOI:10.1016/j.febslet.2004.11.005]
11. Lee, H., Fischer, R.L., Goldberg, R.B. and Harada, J.J. (2003). Arabidopsis LEAFY COTYLEDON1 represents a functionally specialized subunit of the CCAAT binding transcription factor. Proceedings of the National Academy of Sciences, 100: 2152-2156. [DOI:10.1073/pnas.0437909100]
12. Li, C., Ng, C.K.Y. and Fan, L.M. (2015). MYB transcription factors, active players in abiotic stress signaling. Environmental and Experimental Botany, 114: 80-91. [DOI:10.1016/j.envexpbot.2014.06.014]
13. Liu, W., Mazarei, M., Ye, R., Peng, Y., Shao, Y., Baxter, H.L., Sykes, R.W., Turner, G.B., Davis, M.F. and Wang, Z.Y. (2018). Switchgrass (Panicum virgatum L.) promoters for green tissue-specific expression of the MYB4 transcription factor for reduced-recalcitrance transgenic switchgrass. Biotechnology for Biofuels, 11: 122. [DOI:10.1186/s13068-018-1119-7]
14. Livak, K.J. and Schmittgen, T.D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods, 25: 402-408. [DOI:10.1006/meth.2001.1262]
15. Lorenzo, O., Piqueras, R., Sánchez-Serrano, J.J. and Solano, R. (2003). ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and jasmonate pathways in plant defense. The Plant Cell, 15: 165-178. [DOI:10.1105/tpc.007468]
16. McConnell, J.R., Emery, J., Eshed, Y., Bao, N., Bowman, J. and Barton, M.K. (2001). Role of PHABULOSA and PHAVOLUTA in determining radial patterning in shoots. Nature, 411: 709. [DOI:10.1038/35079635]
17. Moayedinezhad, A., Mohammadparast, B., Hosseini Salekdeh, G.H., Mohsenifard, E. and Nejatian, M.A. (2019). Upstream regulatory elements, potential targets and expression patterns of three drought responsive miRNAs in two grapevine cultivars. Plant Genetic Researches, 6(1): 115-126 (In Persian). [DOI:10.29252/pgr.6.1.115]
18. Okada, M. and Shi, Y.B. (2018). The balance of two opposing factors Mad and Myc regulates cell fate during tissue remodeling. Cell & Bioscience, 8: 51. [DOI:10.1186/s13578-018-0249-8]
19. Park, S.C., Kim, I.R., Kim, J.Y., Lee, Y., Kim, E.J., Jung, J.H., Jung, Y.J., Jang, M.-K. and Lee, J.R. (2018). Molecular mechanism of Arabidopsis thaliana profilins as antifungal proteins. Biochimica et Biophysica Acta (BBA)-General Subjects, 1862: 2545-2554. [DOI:10.1016/j.bbagen.2018.07.028]
20. Pasquali, G., Biricolti, S., Locatelli, F., Baldoni, E. and Mattana, M. (2008). Osmyb4 expression improves adaptive responses to drought and cold stress in transgenic apples. Plant Cell Reports, 27: 1677-1686. [DOI:10.1007/s00299-008-0587-9]
21. Ravash, R., Shiran, B., Ebrahimie, E. and Houshmand, S. (2013). Study of S-Like RNase expression in wheat and its wild relatives under drought stress. Journal of Agricultural Biotechnology, 5(1): 27-38 (In persian).
22. Ravash, R., Shiran, B., Ebrahimie, E. and Houshmand, S. (2018). Promoter analysis of S-Like RNase gene in transgenic rice. Journal of Agricultural Biotechnology, 9(4): 65-80 (In persian).
23. Riechmann, J. (2000). Transcription factors: genome-wide Arabidopsis. Science, 290: 2105-2105. [DOI:10.1126/science.290.5499.2105]
24. Riechmann, J.L. and Meyerowitz, E.M. (1997). MADS domain proteins in plant development. Biological Chemistry, 378: 1079-1102.
25. Siddique, M., Hamid, A. and Islam, M. (2000). Drought stress effects on water relations of wheat. Botanical Bulletin of Academia Sinica, 41: 35-39.
26. Tang, Y., Bao, X., Zhi, Y., Wu, Q., Yin, X., Zeng, L., Li, J., Zhang, J., He, W. and Liu, W. (2019). Overexpression of a MYB family gene, OsMYB6, increases drought and salinity stress tolerance in transgenic rice. Frontiers in Plant Science, 10: 168. [DOI:10.3389/fpls.2019.00168]
27. Thapa, G.D., Dey, M., Sahoo, L. and Panda, S. (2011). An insight into the drought stress induced alterations in plants. Biologia Plantarum, 55: 603. [DOI:10.1007/s10535-011-0158-8]
28. Wang, W.L., Wang, Y.X., Li, H., Liu, Z.W., Cui, X. and Zhuang, J. (2018). Two MYB transcription factors (CsMYB2 and CsMYB26) are involved in flavonoid biosynthesis in tea plant [Camellia sinensis (L.) O. Kuntze]. BMC Plant Biology, 18: 288. [DOI:10.1186/s12870-018-1502-3]
29. Xiong, Y., Liu, T., Tian, C., Sun, S., Li, J. and Chen, M. (2005). Transcription factors in rice: a genome-wide comparative analysis between monocots and eudicots. Plant Molecular Biology, 59: 191-203. [DOI:10.1007/s11103-005-6503-6]
30. Yang, Y., Li, R. and Qi, M. (2000). In vivo analysis of plant promoters and transcription factors by agroinfiltration of tobacco leaves. The Plant Journal, 22: 543-551. [DOI:10.1046/j.1365-313x.2000.00760.x]
31. Zhao, Y., Cheng, X., Liu, X., Wu, H., Bi, H. and Xu, H. (2018). The wheat MYB transcription factor TaMYB31 is involved in drought stress responses in Arabidopsis. Frontiers in Plant Science, 9: 1426. [DOI:10.3389/fpls.2018.01426]
32. Zimmerli, L., Stein, M., Lipka, V., Schulze‐Lefert, P. and Somerville, S. (2004). Host and non‐host pathogens elicit different jasmonate/ethylene responses in Arabidopsis. The Plant Journal, 40: 633-646. [DOI:10.1111/j.1365-313X.2004.02236.x]
Send email to the article author



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Arab K, Ravash R, Shiran B. Evaluation of MYB93 and MAD8 Genes in Transgenic and Non-Transgenic Rice. pgr 2020; 6 (2) :33-42
URL: http://pgr.lu.ac.ir/article-1-170-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 6, Issue 2 (2020) Back to browse issues page
پژوهش های ژنتیک گیاهی Plant Genetic Researches
Persian site map - English site map - Created in 0.07 seconds with 38 queries by YEKTAWEB 4657