Identification and Investigation of WRKY Gene Family in Camelina Plant (Camelina sativa) and Identification of the Most Important Gene Members Involved in Drought Stress
|
Seyede Maryam Seyed Seyed Hassan Pour , Leila Nejadsadeghi * , Zahra Sadat Shobbar , Danial Kahrizi |
Department of Plant Production and Genetics, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran , l.nejadsadeghi@scu.ac.ir |
|
Abstract: (2092 Views) |
Camelina )Camelina sativa (is an annual, self-pollinating, allohexaploid plant with diploid inheritance belonging to the Brassicaceae family. Camelina exhibits a remarkable degree of similarity to the model plant Arabidopsis thaliana. WRKY transcription factors are among important gene families in plants that play crucial roles in regulating growth and development and in response to diverse stresses. In this research, using bioinformatics analysis and databases, members of the WRKY gene family were identified and their various characteristics were investigated. Overall, the genome of the Camelina plant was found to harbor 214 members of the WRKY gene family. All 214 WRKY genes were found to possess the conserved WRKY functional domain, along with a variety of motifs within their structural composition. Phylogenetic analysis divided the identified members of Camelina WRKY genes into four main groups. Examination of the chromosomal positions revealed that the 214 identified WRKY genes exhibited an uneven distribution across the chromosomes. In order to validate the identified genes, the expression of two genes (Csa11g065620 and Csa07g035970) orthologs of two genes involved in drought stress in Arabidopsis (WRKY8 and WRKY57), were investigated in a drought tolerant (DH 91) and a drought sensitive (DH 101) lines. The results of the gene expression analysis showed that both genes had high expression in drought stress conditions in tolerant line in comparison to normal conditions, whereas no significant expression was found in drought sensitive line. The findings of the present study offer valuable insights for evolutionary investigations and enhance our understanding of the functional roles of the WRKY gene family in Camelina, thereby laying a foundation for future research endeavors in this field. |
|
Keywords: Environmental stresses, Gene family, Conserved domain, WRKY transcription factors, Phylogenetic |
|
Full-Text [PDF 1932 kb]
(752 Downloads)
|
Type of Study: Research |
Subject:
Molecular genetics
|
|
|
|
|
References |
1. Bailey, T.L., Johnson, J., Grant, C.E. and Noble, W.S. (2015). The MEME suite. Nucleic Acids Research, 43(1): 39-49. [ DOI:10.1093/nar/gkv416] 2. Berti, M., Samarappuli, D., Johnson, B.L. and Gesch, R.W. (2017). Integrating winter camelina into maize and soybean cropping systems. Industrial Crops and Products, 107: 595-601. [ DOI:10.1016/j.indcrop.2017.06.014] 3. Blackshaw, R., Johnson, E., Gan, Y., May, W., McAndrew, D., Barthet, V., McDonald, T. and Wispinski, D. (2011). Alternative oilseed crops for biodiesel feedstock on the Canadian prairies. Canadian Journal of Plant Science, 91: 889-896. [ DOI:10.4141/cjps2011-002] 4. Christou, A., Georgiadou, E.C., Filippou, P., Manganaris, G.A. and Fotopoulos, V. (2014). Establishment of a rapid, inexpensive protocol for extraction of high quality RNA from small amounts of strawberry plant tissues and other recalcitrant fruit crops. Gene, 537: 169-173. [ DOI:10.1016/j.gene.2013.11.066] 5. Eulgem, T., Rushton, P.J., Robatzek, S. and Somssich, I.E. (2000). The WRKY superfamily of plant transcription factors. Trends in Plant Science, 5: 199-206. [ DOI:10.1016/S1360-1385(00)01600-9] 6. Gehringer, A., Friedt, W., Lühs, W. and Snowdon, R. (2006). Genetic mapping of agronomic traits in false flax (Camelina sativa subsp. sativa). Genome, 49: 1555-1563. [ DOI:10.1139/g06-117] 7. Giacomelli, J.I., Ribichich, K.F., Dezar, C.A. and Chan, R.L. (2010). Expression analyses indicate the involvement of sunflower WRKY transcription factors in stress responses, and phylogenetic reconstructions reveal the existence of a novel clade in the Asteraceae. Plant Science, 178: 398-410. [ DOI:10.1016/j.plantsci.2010.02.008] 8. Gonzalez, D.H. (2015) Plant transcription Factors: Evolutionary, Structural and Functional Aspects. Academic Press, Cambridge, Massachusetts, USA. 9. Goyal, P., Devi, R., Verma, B., Hussain, S., Arora, P., Tabassum, R. and Gupta, S. (2023). WRKY transcription factors: Evolution, regulation, and functional diversity in plants. Protoplasma, 260: 331-348. [ DOI:10.1007/s00709-022-01794-7] 10. Guo, X., Ullah, A., Siuta, D., Kukfisz, B. and Iqbal, S. (2022). Role of WRKY transcription factors in regulation of abiotic stress responses in cotton. Life, 12: 1410. [ DOI:10.3390/life12091410] 11. Hosseini, S.Z., Ismaili, A. and Sohrabi, S.S. (2019). Evaluation of Drought Tolerance in Safflower (Carthamus tinctorius L.) Under Water Deficit Stress Conditions. Plant Genetic Researches, 5: 55-72 (In Persian). [ DOI:10.29252/pgr.5.2.55] 12. Hu, Y., Chen, L., Wang, H., Zhang, L., Wang, F. and Yu, D. (2013). A rabidopsis transcription factor WRKY 8 functions antagonistically with its interacting partner VQ 9 to modulate salinity stress tolerance. The Plant Journal, 74: 730-745. [ DOI:10.1111/tpj.12159] 13. Ishiguro, S. and Nakamura, K. (1994). Characterization of a cDNA encoding a novel DNA-binding protein, SPF1, that recognizes SP8 sequences in the 5′ upstream regions of genes coding for sporamin and β-amylase from sweet potato. Molecular and General Genetics MGG, 244: 563-571. [ DOI:10.1007/BF00282746] 14. Jiang, J., Ma, S., Ye, N., Jiang, M., Cao, J. and Zhang, J. (2017). WRKY transcription factors in plant responses to stresses. Journal of Integrative Plant Biology, 59: 86-101. [ DOI:10.1111/jipb.12513] 15. Jiang, Y., Duan, Y., Yin, J., Ye, S., Zhu, J., Zhang, F., Lu, W., Fan, D. and Luo, K. (2014). Genome-wide identification and characterization of the Populus WRKY transcription factor family and analysis of their expression in response to biotic and abiotic stresses. Journal of Experimental Botany, 65: 6629-6644. [ DOI:10.1093/jxb/eru381] 16. Jiang, Y., Liang, G. and Yu, D. (2012). Activated expression of WRKY57 confers drought tolerance in Arabidopsis. Molecular Plant, 5: 1375-1388. [ DOI:10.1093/mp/sss080] 17. Jiang, Y., Qiu, Y., Hu, Y. and Yu, D. (2016). Heterologous expression of AtWRKY57 confers drought tolerance in Oryza sativa. Frontiers in Plant Science, 7: 145. [ DOI:10.3389/fpls.2016.00145] 18. Jin, J., Tian, F., Yang, D.C., Meng, Y.Q., Kong, L., Luo, J. and Gao, G. (2016). PlantTFDB 4.0: toward a central hub for transcription factors and regulatory interactions in plants. Nucleic Acids Research, 45(D1): 1040-1045. [ DOI:10.1093/nar/gkw982] 19. Khoso, M.A., Hussain, A., Ritonga, F.N., Ali, Q., Channa, M.M., Alshegaihi, R.M., Meng, Q., Ali, M., Zaman, W. and Brohi, R.D. (2022). WRKY transcription factors (TFs): Molecular switches to regulate drought, temperature, and salinity stresses in plants. Frontiers in Plant Science, 13: 1039329. [ DOI:10.3389/fpls.2022.1039329] 20. Kumar, S., Stecher, G., Li, M., Knyaz, C. and Tamura, K. (2018). MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35: 1547. [ DOI:10.1093/molbev/msy096] 21. Lamesch, P., Berardini, T.Z., Li, D., Swarbreck, D., Wilks, C., Sasidharan, R., Muller, R., Dreher, K., Alexander, D. L. and Garcia-Hernandez, M. (2012). The Arabidopsis information resource (TAIR): improved gene annotation and new tools. Nucleic Acids Research, 40(1), 1202-1210. [ DOI:10.1093/nar/gkr1090] 22. Larsson, M. (2013). Cultivation and processing of Linum usitatissimum and Camelina sativa in southern Scandinavia during the Roman Iron Age. Vegetation History and Archaeobotany, 22: 509-520. [ DOI:10.1007/s00334-013-0413-3] 23. Li, W., Pang, S., Lu, Z. and Jin, B. (2020). Function and mechanism of WRKY transcription factors in abiotic stress responses of plants. Plants, 9: 1515. [ DOI:10.3390/plants9111515] 24. Li, X. and Mupondwa, E. (2014). Life cycle assessment of camelina oil derived biodiesel and jet fuel in the Canadian Prairies. Science of the Total Environment, 481: 17-26. [ DOI:10.1016/j.scitotenv.2014.02.003] 25. Ling, J., Jiang, W., Zhang, Y., Yu, H., Mao, Z., Gu, X., Huang, S. and Xie, B. (2011). Genome-wide analysis of WRKY gene family in Cucumis sativus. BMC Genomics, 12: 1-20. [ DOI:10.1186/1471-2164-12-471] 26. Livak, K.J. and Schmittgen, T.D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods, 25: 402-408. [ DOI:10.1006/meth.2001.1262] 27. Lu, C. and Kang, J. (2008). Generation of transgenic plants of a potential oilseed crop Camelina sativa by Agrobacterium-mediated transformation. Plant Cell Reports, 27: 273-278. [ DOI:10.1007/s00299-007-0454-0] 28. Mao, P., Jin, X., Bao, Q., Mei, C., Zhou, Q., Min, X. and Liu, Z. (2020). WRKY transcription factors in Medicago sativa L.: Genome-wide identification and expression analysis under abiotic stress. DNA and Cell Biology, 39: 2212-2225. [ DOI:10.1089/dna.2020.5726] 29. Marchler-Bauer, A., Derbyshire, M.K., Gonzales, N.R., Lu, S., Chitsaz, F., Geer, L.Y., Geer, R.C., He, J., Gwadz, M. and Hurwitz, D.I. (2014). DD: NCBI's conserved domain database. Nucleic Acids Research, 43: D222-D226. [ DOI:10.1093/nar/gku1221] 30. Meng, D., Li, Y., Bai, Y., Li, M. and Cheng, L. (2016). Genome-wide identification and characterization of WRKY transcriptional factor family in apple and analysis of their responses to waterlogging and drought stress. Plant Physiology and Biochemistry, 103: 71-83. [ DOI:10.1016/j.plaphy.2016.02.006] 31. Merah, O., Langlade, N., Alignan, M., Roche, J., Pouilly, N., Lippi, Y., Vear, F., Cerny, M., Bouniols, A. and Mouloungui, Z. (2012). Genetic analysis of phytosterol content in sunflower seeds. Theoretical and Applied Genetics, 125: 1589-1601. [ DOI:10.1007/s00122-012-1937-0] 32. Mondor, M. and Hernández‐Álvarez, A.J. (2022). Camelina sativa composition, attributes, and applications: A review. European Journal of Lipid Science and Technology, 124: 21-35. [ DOI:10.1002/ejlt.202100035] 33. Pessarakli, M. (2019) Handbook of Plant And Crop Stress. CRC Press, Boca Raton, Florida, USA. [ DOI:10.1201/9781351104609] 34. Priest, H.D., Filichkin, S.A. and Mockler, T.C. (2009). Cis-regulatory elements in plant cell signaling. Current opinion in Plant Biology, 12: 643-649. [ DOI:10.1016/j.pbi.2009.07.016] 35. Raeesi Sadati, S.Y., Jahanbakhsh Godehkahriz, S., Ebadi, A. and Sedghi, M. (2021). Study of Expression Pattern of Some Transcription Factors in Wheat under Drought Stress and Zinc Nanoparticles. Plant Genetic Researches, 7: 135-144 (In Persian).
Ruiz‐Lopez, N., Haslam, R.P., Napier, J. A. and Sayanova, O. (2014). Successful high‐level accumulation of fish oil omega‐3 long‐chain polyunsaturated fatty acids in a transgenic oilseed crop. The Plant Journal, 77(2): 198-208.
https://doi.org/10.1111/tpj.12378 [ DOI:10.52547/pgr.7.2.11] 36. Rushton, P.J., Somssich, I.E., Ringler, P. and Shen, Q.J. (2010). WRKY transcription factors. Trends in Plant Science, 15: 247-258. [ DOI:10.1016/j.tplants.2010.02.006] 37. Snell, K.D. and Peoples, O.P. (2013). Production of value-added co-products in industrial oilseeds. Inform, 24(10): 640-643. 38. Song, Y., Cui, H., Shi, Y., Xue, J., Ji, C., Zhang, C., Yuan, L. and Li, R. (2020). Genome-wide identification and functional characterization of the Camelina sativa WRKY gene family in response to abiotic stress. BMC Genomics, 21: 1-17. [ DOI:10.1186/s12864-020-07189-3] 39. Vafaei, N., Tavakolipour, H. and Ghodsvali, A. (2010). Some biophysical properties of oily sunflower achenes in Golestan province. Journal of food science and technology (Iran), 7(25): 103-115 (In Persian). 40. Villao-Uzho, L., Chávez-Navarrete, T., Pacheco-Coello, R., Sánchez-Timm, E. and Santos-Ordóñez, E. (2023). Plant promoters: their identification, characterization, and role in gene regulation. Genes, 14: 1226. [ DOI:10.3390/genes14061226] 41. Vives-Peris, V., Marmaneu, D., Gómez-Cadenas, A. and Pérez-Clemente, R. (2018). Characterization of Citrus WRKY transcription factors and their responses to phytohormones and abiotic stresses. Biologia Plantarum, 62: 33-44. [ DOI:10.1007/s10535-017-0737-4] 42. Voorrips, R. (2002). MapChart: software for the graphical presentation of linkage maps and QTLs. Journal of Heredity, 93: 77-78. [ DOI:10.1093/jhered/93.1.77] 43. Wani, S.H., Anand, S., Singh, B., Bohra, A. and Joshi, R. (2021). WRKY transcription factors and plant defense responses: Latest discoveries and future prospects. Plant Cell Reports, 40: 1071-1085. [ DOI:10.1007/s00299-021-02691-8] 44. Wei, K.F., Chen, J., Chen, Y.F., Wu, L.J. and Xie, D.X. (2012).Molecular phylogenetic and expression analysis of the complete WRKY transcription factor family in maize. DNA Research, 19: 153-164. [ DOI:10.1093/dnares/dsr048] 45. Yang, X., Lu, M., Wang, Y., Wang, Y., Liu, Z. and Chen, S. (2021). Response mechanism of plants to drought stress. Horticulturae, 7: 50. [ DOI:10.3390/horticulturae7030050] 46. Yazdani, B., Asghari-Zakaria, R. and Shobbar, Z.S. (2015). Identification and classification of the WRKY transcription factors family in barley. Genetic Engineering and Biosafety Journal, 4: 41-54. 47. Zanetti, F., Alberghini, B., Marjanović Jeromela, A., Grahovac, N., Rajković, D., Kiprovski, B. and Monti, A. (2021). Camelina, an ancient oilseed crop actively contributing to the rural renaissance in Europe. A review. Agronomy for Sustainable Development, 41: 1-18. [ DOI:10.1007/s13593-020-00663-y] 48. Zubr, J. (2003). Qualitative variation of Camelina sativa seed from different locations. Industrial Crops and Products, 17: 161-169. [ DOI:10.1016/S0926-6690(02)00091-2]
|
|
Send email to the article author |
|
|
Seyed Hassan Pour S M S, Nejadsadeghi L, Shobbar Z S, Kahrizi D. Identification and Investigation of WRKY Gene Family in Camelina Plant (Camelina sativa) and Identification of the Most Important Gene Members Involved in Drought Stress. pgr 2024; 10 (2) :63-78 URL: http://pgr.lu.ac.ir/article-1-291-en.html
|